ML
机器学习
最后更新于
这有帮助吗?
机器学习
最后更新于
这有帮助吗?
图宾根大学机器学习
AMLD指的是Applied Machine Learning Days(应用机器学习日),是一个面向机器学习和人工智能领域的国际会议,也是一个非营利性组织。该组织致力于促进机器学习和人工智能技术的应用和发展,并为学术界、工业界和政府机构提供交流和合作的平台。AMLD成立于2016年,总部位于瑞士日内瓦。该组织定期举办国际会议、研讨会和培训课程,吸引了来自全球各地的学者、研究人员、工程师、企业家和政府官员参加。
arXiv
arXiv是由康奈尔大学运营的一个非营利性科学论坛,通常科学家在论文正式发表前会预先发到arXiv上防止自己的理论被剽窃.
Tensorflow Object Detection in 5 Hours with Python
[Tutorialsplanet.NET] Udemy - TensorFlow 2.0 Practical Advanced
PyTorch - Python Deep Learning Neural Network API
No Black Box Machine Learning Course – Learn Without Libraries
MIT公开课6.034 人工智能1 (带字幕) 唐逸豪
Stanford CS229: Machine Learning
[Tutorialsplanet.NET] Udemy -Artificial Intelligence with Python
[Tutorialsplanet.NET] Udemy - Machine Learning, Deep Learning and Bayesian Learning
54:47:36
2022 Fall 台大資訊 深度學習之應用 NTU CSIE ADL
MIT 6.S192:艺术、美学和创造力的深度学习
伊利亚·苏茨克沃 苏神 OpenAI的联合创始人和首席科学家
谷歌大脑 人工智能科学家 AlphaGo论文作者之一
Greg Brockman OpenAI CEO CTO
动手学深度学习
数据科学
Python for Data Science - Course for Beginners (Learn Python, Pandas, NumPy, Matplotlib)
剪支 pruning
聚类的"好坏"不存在绝对的标准
寻找标准是关键
常见的聚类方法
原型聚类
亦称"基于原型的聚类"(prototype-based clustering)
假设:聚类结构能够通过一组原型刻画
过程:先对原型初始化, 然后对原型进行迭代更新求解
代表:k均值聚类, 学习向量量化(LVQ), 高斯混合聚类
密度聚类
亦称"基于密度的聚类"(density-based clustering)
假设:聚类结构能够通过样本分布的紧密程度确定
过程:从样本密度的角度来考察样本之间的可连续性, 并基于可连接样本不断扩展聚类蔟
代表:DBSCAN, OPTICS, DENCLUDE
层次聚类(hierarchical clustering)
假设:能够产生不同粒度的聚类结果
过程:在不同层次对数据集进行划分, 从而形成树形的聚类结构
代表:AGNES(自低向上), DIANA(自顶向下)
数据科学读书会 Book 15 – 《Hands-on Time Series Analysis with Python》
Time Series Analysis:Data Scientist是如何做时间序列分析的?(第566期)
Time Series Forecasting Theory
Visualize Neural Networks
AI框架之计算图
"图计算"和"计算图"是不同的概念,尽管它们之间有一些关联。
"计算图"通常指的是一种表示计算过程的图形结构,其中节点表示计算操作,边缘表示数据流。它通常被用于深度学习中,以表示神经网络的计算过程。在计算图中,每个节点执行特定的数学运算,并将结果传递给后续节点。这种图形表示方式有助于优化计算和自动求导。
"图计算"是一种计算模型,它使用图形结构来表示和处理数据。它的基本思想是将数据存储为图形结构,然后使用图形算法来处理数据。图计算可以应用于许多领域,例如社交网络分析、推荐系统和生物信息学。
因此,尽管它们之间有一些相似之处,但"图计算"和"计算图"是不同的概念。"计算图"是一种表示计算过程的图形结构,而"图计算"是一种使用图形结构来表示和处理数据的计算模型。
LSTM
将简单的均匀分布抽样转化为复杂分布抽样的方法:
逆转换方法 Inverse Transform Sampling
接受拒绝抽样 Acceptance Rejection Sampling
[Tutorialsplanet.NET] Udemy - Unsupervised Machine Learning Hidden Markov Models in Python
基于采样的马尔可夫链蒙特卡罗(Markov Chain Monte Carlo,简称MCMC)方法
Box-Muller算法?
接受拒绝抽样 Acceptance Rejection Sampling
metropolis Hastings
Gibbs Sampling
三个丑皮匠 顶个诸葛亮
[Tutorialsplanet.NET] Udemy - Ensemble Machine Learning in Python Random Forest, AdaBoost
序列化方法 AdaBoost(Boosting家族) GradientBoost(XGBoost*) LPBoost
异质配准Alignment
并行化方法 Bagging Random Forest* Random Subspace
E = E' - A', diversity is A'
圣杯 "What is diversity" remains the holy grail problem of ensemble learning
对比学习(Contrastive Learning)是一种无监督学习方法,旨在通过将相似的样本进行比较来学习有用的表示。在对比学习中,算法试图将来自同一类别的样本分组在一起,并将来自不同类别的样本分开。这可以通过比较两个或多个样本的表示来实现,例如将它们映射到一个低维向量空间中。
对比学习通常用于解决许多计算机视觉问题,例如图像分类、目标检测和语义分割。在这些问题中,通常需要大量的有标签数据来训练模型,而对比学习则提供了一种可以使用无标签数据进行训练的替代方案。
在最近的研究中,对比学习已经被证明在许多任务上具有出色的性能,例如自然语言处理和推荐系统。由于其可扩展性和适应性,对比学习已经成为了当前深度学习领域的一个热门话题。
Momentum Contrast(MoCo)
什么是因果推断Causal inference?为什么数据科学家要知道这个?(第612期)
Ali Ghodsi, Lec : Deep Learning, Variational Autoencoder, Oct 12 2017 [Lect 6.2]
Variational Inference: Foundations and Modern Methods (NIPS 2016 tutorial)
label encoding, 把标签变成数字
过采样, oversampling smote
欠采样, undersampling EasyEnsemble
阈值移动, threshold moving
链接: https://pan.baidu.com/s/1CC6BFfiw0DcyVfYTofmH9A 提取码: r4z3
pyviz
Matplotlib
Plotly
[Tutorialsplanet.NET] Udemy - 2022 Python Data Analysis & Visualization Masterclass
[Tutorialsplanet.NET] Udemy - The Complete Data Visualization Course 2020
Tableau 是一个可视化分析平台,它改变了我们使用数据解决问题的方式,使个人和组织能够充分利用自己的数据。
a software version control visualization tool
电子教鞭
inux下netmeeting
红烛电子教鞭
deepin-draw
pointofix
TensorRT是英伟达(NVIDIA)推出的深度学习推理加速库,它针对深度学习模型的推理阶段进行了优化。TensorRT(TensorRT是Tensor Runtime的缩写)可以通过高度优化的网络层和推理算法,提供低延迟和高吞吐量的深度学习推理性能。
TensorRT的主要功能包括:
网络优化:TensorRT可以通过对模型进行层级优化、融合相邻层、剪枝和量化等技术,来提高模型的推理性能。它可以自动检测并融合相似操作,减少了内存带宽和计算需求。
精度校准:TensorRT支持对模型进行精度校准,从而在保持模型准确性的同时,进一步优化推理性能。它可以通过减少浮点运算的位数或者使用定点数表示来降低计算复杂度。
动态尺寸支持:TensorRT可以处理具有可变输入尺寸的模型。这意味着可以根据实际输入的尺寸动态调整网络的计算图和内存分配。
多平台和多框架支持:TensorRT可以与多个深度学习框架(如TensorFlow、PyTorch和Caffe)无缝集成,同时支持多个硬件平台(包括NVIDIA的GPU和DPU)。
使用TensorRT可以显著提高深度学习模型的推理速度和效率,特别适用于需要实时性能的应用场景,如自动驾驶、工业自动化、物体检测和视频分析等。
总之,TensorRT是一个优化深度学习推理的强大工具,它通过网络优化、精度校准和动态尺寸支持等功能,提供高性能的推理加速,从而加快了深度学习模型在实际应用中的部署和执行速度。
TensorRT更加偏向于深度学习模型的部署阶段。它专注于对已经训练好的模型进行优化和加速,以提高模型在推理阶段的性能和效率。
南京大学人工智能学院院长周志华《机器学习西瓜书》白话解读,一起啃书! AI技术星球 28:27:48
ESL
NVIDIA(, )
NVIDIA Developer(, , , , )
RE•WORK(, )
MNN - 深度神经网络推理引擎(, , )
Scientific Computing and Artificial Intelligence
MIT OpenCourseWare(, , , , , , , , )
(, )
Theano(, , , , )
XLearning(, , , )
Towards Data Science(, )
天善智能学院(, , )
CityAge Media(, )
SF Python
Zfort Group(, )
KDD2018 video
Компьютерные науки计算机科学(, )
Serrano.Academy
臺大科學教育發展中心CASE
机器学习
中国人工智能学会 CAAI
mechanical coder
台灣機器學習有限公司
Microsoft(, , , )
MOPCON
Vivian NTU MiuLab
Cartesiam
Stanford MLSys Seminars
Center for Language and Speech (CLSP) @ JHU
Stanford HAI
Machine Learning at Berkeley
The Alan Turing Institute
Tübingen Machine Learning
MLSS Iceland 2014 Machine Learning Summer School
Advances in AI(, )
Training Data for Machine Learning(, )
ABC of DataScience and ML(, )
Machine Learning: ML AI(, )
Python & Machine Learning(, )
HW accelerators eating AI(, )
Machine Learning(, )
Machine Learning 93(, )
Data science must needed(, )
Psychology of Machines(, )
Future TEC.(, )
Global AI Platform(, )
AMLD Africa Applied Machine Learning Days
Carnegie Mellon University Deep Learning
Deep Learning(, )
Supervisely
Ping Data Science(, )
Data Engineering Minds(, )
Data Sciences - Analytics(, )
Data Analytics or EnGines(, )
Data Science in Marketing(, )
迪哥有点愁 , 迪哥谈AI 唐宇迪
sentdex(, , )
Data Application Lab
莫烦Python(, )
将门-TechBeat技术社区(, )
DeepMind(, )
华校专(, , , )
Knowing AI B更多
Dan Van Boxel(, )
Pi School(, )
Siraj Raval(, )
Marc McLean(, )
Sam Gu(, )
Geoff Gordon(, )
AiPhile
Mark Jay(, )
Arxiv Insights(, )
AI壹号堂(, )
yingshaoxo's lab(, )
SuperGqq(, )
Jeff Heaton(, , )
红色石头(, , 微信公众号/微博:AI有道)
Pascal Poupart(, )
艾哈迈德·巴齐(Ahmad Bazzi)(, )
Two Minute Papers(, )
Kai博士(, )
Daniel Bourke(, )
Manisha Sirsat(, )
刘先生(, )
Nicholas Renotte(, )
DigitalSreeni
Applied AI Course(, )
CodeEmporium
帅帅家的人工智障(, )
李宏毅Hung-yi Lee(, , )
深度碎片(, )
DeepPavlov
啥都会一点的研究生(, )
Math4AI(, )
Acsic People(, )
Pantech eLearning(, )
爱可可-爱生活/Guang Chen/fly51fly/
AI Prism(, )
StatQuest with Josh Starmer(, )
The Coding Train
魏博士人工智能 抖音号:
李文哲 抖音号:
AI有啥用 抖音号:
AI技术资讯 抖音号:
好玩的AI 抖音号:
算法工坊 抖音号:
阿里达摩院扫地僧 抖音号:
小乔斯在洛杉矶 抖音号:
MITCBMM
FunInCode
王木头学科学
硅谷吴军 抖音号:
The AI Epiphany
技术喵
珂学原理
高怡宣老師
白手起家的百万富翁
William
李政軒
人工智能之趋势
Luis Serrano
徐亦达
Art of the Problem
Shusen Wang
Artificial Intelligence - All in One
跨象乘云
Weights & Biases
AICamp
卍卍子非鱼卍卍
Scc_hy
codebasics
人工智慧與數位教育中心 NCCU AIEC
解密遊俠
贪心学院 Greedy AI
Min Yuan
hashtag/
深度之眼官方账号
Learning AI
財團法人人工智慧科技基金會
千锋教育
做大饼馅儿的韭菜
机器学习-白板推导系列 shuhuai008
容噗玩Data
Justin Solomon
WsCube Tech! ENGLISH
Machine Learning with Phil
就是不吃草的羊
Artificial Intelligence and Blockchain
Colin Galen
Si磕AI论文的女算法 抖音号:
When Maths Meet Coding
Artificial Intelligence Society
Dr. Data Science
Pista Academy 波斯语
Parallel Computing and Scientific Machine Learning
William
Machine Learning Street Talk
Dr Alan D. Thompson
Jeremy Howard
Artem Kirsanov
James Briggs
論文導讀
TeachMe AI
Priya Bhatia
大白话AI
Find Interesting AI
Open Data Science
飞桨Paddle(, , (), , , )
Deeplearning.ai(, )
Sung Kim(, )
Leonardo Zhou(, )
Caffe2(, )
deeplearningbook(, , )
DL4J(, )
VisualDL(, , )
Alan Tessier
Alexander Amini(, )
deeplizard(, )
Alex Smola(, )
Lex Fridman(, )
Alena Kruchkova(, )
Alex(, )
Rachel Thomas(, )
Deep Sort(, )
Yannic Kilcher(, (), )
Tien-Lung Sun
茶米老師教室
AI转转转
,
fastbook(, , )
Jeremy Howard — The Story of fast.ai and Why Python Is Not the Future of ML
Jeremy Howard: fast.ai Deep Learning Courses and Research | Podcast #35
Data Professor(, , , , )
Data Science Conference(, )
Data Science Courses(, )
APMonitor.com
Ken Jee
小旭学长
Pepcoding
Amulya's Academy
Yoav Freund
火線班迪 阿石OMP 肥拉超漫flcman
深度学习与PyTorch教程
深度学习与TensorFlow 2入门实战
深度学习与TensorFlow 2
2022 Version of Applications of Deep Neural Networks for TensorFlow and Keras (Washington University in St. Louis)
I built the same model with TensorFlow and PyTorch | Which Framework is better?
AI框架基础
TensorFlow(, , , , , , , , , , , 书栈(, , ), )
jikexueyuanwiki/ TensorFlow官方文档中文版 s 过时
TensorFlow 2.x Insights
TensorFlow2.0 入门到进阶
【北京大学】人工智能 Tensorflow2.0 mocm
人工智能 Tensorflow 视频教程全集| 5 小时从入门到精通
TensorFlow Tutorial 修炼指南
Tensorflow框架
TensorFlow快速入门与实战
TensorFlow 2项目进阶实战
TensorFlow 2.0 Complete Course - Python Neural Networks for Beginners Tutorial 6:52:07 Tech With Tim
TensorFlow 2.0 Crash Course
机器学习从零到一 TensorFlow
TensorFlow Lite 视频系列教程
深度学习应用开发-TensorFlow实践
TensorFlow 2.0
TensorFlow Lite 视频系列教程
TensorFlow 2 Beginner Course
Deep Learning for JavaScript Hackers | Use TensorFlow.js in the Browser
Made with TensorFlow.js
TensorFlow And Keras Tutorial | Deep Learning With TensorFlow & Keras | Deep Learning |
联想拯救者R9000P安装Ubuntu 21.04系统及运行TensorFlow1.X代码
Tensorflow
Google's Machine Learning Virtual Community Day
TensorFlow Lite for Edge Devices - Tutorial
Android Apps YOLOv4 TFLite Object Detection Android App Tutorial Using YOLOv4 Tiny, YOLOv4, and YOLOv4 Custom
深度学习框架Tensorflow2实战 唐宇迪
Learn TensorFlow and Deep Learning (beginner friendly code-first introduction)
Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 1/2 10:15:27
Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 2/2 3:57:54
Aladdin Persson
Deep Learning for Computer Vision with TensorFlow – Complete Course 1:13:16:40 colab
PyTorch PyTorch(, , , , )
pytorch/ the official PyTorch tutorials
PyTorch for Deep Learning & Machine Learning – Full Course 1:01:37:25
Getting Started With PyTorch (C++)
Image Classification using CNN from Scratch in Pytorch
Neural Network Programming - Deep Learning with PyTorch
Pytorch基础入门
PyTorchZeroToAll (in English)
PyTorch
PyTorch for Deep Learning - Full Course / Tutorial 9:41:39
Deep Learning and Neural Networks with Python and Pytorch
TorchScript and PyTorch JIT | Deep Dive
PyTorch and Monai for AI Healthcare Imaging - Python Machine Learning Course
PyTorch Tutorials - Complete Beginner Course
Introduction to PyTorch Tensors
PyTorch - Deep Learning Course | Full Course | Session -1 | Python
Getting Started With PyTorch (C++)
PyTorch on Apple Silicon | Machine Learning
Invited Talk: - By Facebook Research Scientist Shen Li
7 PyTorch Tips You Should Know
Learn PyTorch for deep learning in a day. Literally. 1:01:36:57
PyTorch Transfer Learning with a ResNet - Tutorial
How to Install PyTorch GPU for Mac M1/M2 with Conda
Saving and Loading a PyTorch Neural Network (3.3)
I Built an A.I. Voice Assistant using PyTorch - part 1, Wake Word Detection
bentrevett/ PyTorch Seq2Seq
PyTorch 深度學習快速入門教程(絕對通俗易懂)| 土堆教程
Python机器学习算法与实战
Python在机器学习中的应用 Daitu/
PyTorch深度学习入门和实战
Machine Learning Course With Python
Deep Learning With PyTorch - Full Course
PyTorch Beginner Series
Pytorch
PyTorch Tutorials (2022)
Pytorch
PyTorch2.0
Pytorch+cpp/cuda extension 教學 tutorial
Aladdin Persson
Install PyTorch for Windows GPU
PyTorch Basics and Gradient Descent |
PyTorch Images and Logistic Regress |
Training Deep Neural Networks on GPUs |
Image Classification with Convolutional Neural Networks |
Data Augmentation, Regularization, and ResNets |
Image Generation using GANs |
PyTorch: Zero to GANs Dhanabhon
Deep Learning with PyTorch: Zero to GANs
Keras(, , , , 文档(, , ), )
Keras - Python Deep Learning Neural Network API
Keras with TensorFlow Course - Python Deep Learning and Neural Networks for Beginners Tutorial
Deep learning using keras in python
Deep Learning with Keras
第一章
第二章
第三章
第四章
第五章
第六章
第七章
第八章
第九章
第十章
JAX
Intro to JAX: Accelerating Machine Learning research
JAX Course
JAX Crash Course - Accelerating Machine Learning code!
JAX Diffusers Community Sprint Talks: Day 1
JAX Diffusers Community Sprint Talks: Day 2
JAX Diffusers Community Sprint Talks: Day 3
JAX talks
Artificial Intelligence (AI) vs Machine Learning vs Deep Learning vs Data Science
机器学习算法地图
Python AI Projects
Radu Mariescu-Istodor
AI 硬體選擇及模型的優化及部署
AI 深度學習軟硬體及框架選擇經驗分享
AppForAI 人工智慧開發工具 Windows 及 Linux 版操作介紹 (淡江大學資管系)
AppForAI-Windows 人工智慧開發工具
Machine Learning Explainability Workshop I Stanford
Machine Learning for Everybody – Full Course
【机器学习 | 理论与实战】 编程 / Python(出品)
Complete Machine Learning and Data Science Courses
MIT 16.412J Cognitive Robotics, Spring 2016
ARTIFICIAL INTELLIGENCE
跟著大師學科技
Machine Learning
人工智能:模型与算法 这个好
人工智能:模型与算法 - 浙江大学
人工智能:模型与算法
With The Authors
Clustering and Segmentation Algorithms explained
Machine Learning Tutorial Python | Machine Learning For Beginners
AI Adventures
Machine Learning Algorithm
Neptune Integrations
【機器學習 2023】(生成式 AI) Autoregressive
【機器學習2022】
【機器學習2021】(中文版)
Next Step of Machine Learning (Hung-yi Lee, NTU, 2019)
Advanced Topics in Deep Learning (Hung-yi Lee, NTU) 2018
Machine Learning (Hung-yi Lee, NTU) 2017
Machine Learning From Scratch In Python - Full Course With 12 Algorithms (5 HOURS)
Machine Learning from Scratch - Python Tutorials Patrick Loeber
Cognitive and AI IBM
MIT 6.034 Artificial Intelligence, Fall 2010
Machine Learning || Part 1
邹博 机器学习 BiteOfPython bt:机器学习理论研究
小象学院-机器学习班升级版III
Deep learning and machine learning
Kaggle实战课程 小象
End-To-End Data Science with Kaggle | Competition speed run?
Top Kaggle Solution for Fall 2022 Semester
七月在线 邹博机器学期算法基础2015年
大数据的统计基础(完) 掘金
课程-人工智能原理
北京大学__人工智能原理
(35:25:56)
CS188 (Spring 2013) Prof. Pieter Abbeel
(02:50:07)
人工智能导论 浙江工业大学 共80课时 12小时15分33秒
机器学习-浙江大学2021
机器学习-浙江大学(研究生课程) 2017 可以搭配李航《统计学习方法》
Tensorflow for Deep Learning Research(, )
CS480/680 Intro to Machine Learning - Spring 2019 - University of Waterloo
Understanding Machine Learning - Shai Ben David | UWaterloo
CS229: Machine Learning | Summer 2019 (Anand Avati)
Stanford CS229 Machine Learning 2008 吴恩达(Andrew Ng)
机器学习(Machine Learning)吴恩达(Andrew Ng)
吴恩达《2022新版机器学习》课程
【斯坦福大学】深度学习(全192讲)吴恩达 27:19:55
Andrew Ng’s Machine Learning Specialization 2022 | What is it and is it worth taking?
EE104: Introduction to Machine Learning
DMQA Lab Open AI/ML Seminar
Meta Learning
Meta Learning
机器学习-45-ML-01-Meta Learning(元学习)
Stanford CS221: Artificial Intelligence: Principles and Techniques | Autumn 2019
Machine Learning for Computational Fluid Dynamics
CS230: Deep Learning | Autumn 2018
CS545 - Information and Data Analytics Seminar Series(, )
Data Analytics Crash Course: Teach Yourself in 30 Days
Machine Learning
机器能像人一样思考吗?人工智能(一)机器学习和神经网络()
人脸识别啥原理?人工智能(二)卷积神经网络()
人工智能AI求职与技术()
JK
Machine Learning
Machine Learning & Deep Learning Fundamentals
-- Berkeley Spring 2020
(强推)李宏毅2021春机器学习课程
Understanding Machine Learning - Shai Ben-David
CS547 - 人机交互研讨会系列
AI, ML & Data Science - Training | Projects - Pantech E Learning
Artificial Intelligence: Knowledge Representation and Reasoning
July 2019 - Practical Machine Learning with Tensorflow
An Introduction to AI - Mausam | IITD - NPTEL
Statistical Learning - Rob and Trevor Hastie | Stanford
Spring 2015: Statistical Machine Learning (10-702/36-702)
Spring 2017: Statistical Machine Learning (10-702/36-702)
ML - Yaser Abu-Mostafa | Caltech
Machine Learning Course - CS 156
AI - Patrick Winston | MIT
Computation and the Brain - Christos H. Papadimitriou December 26 - 28 2019
有趣的机器学习
机器学习算法基础
机器学习基础配套项目实战课程
机器学习系列课程
机器学习(Machine Learning)吴恩达(Andrew Ng)
Lecture Collection | Machine Learning 吴恩达(Andrew Ng)
机器学习基础:案例研究(华盛顿大学) 共116课时 8小时3分27秒
[2020] 统计机器学习 [Statistical Machine Learning]【生肉】图宾根机器学习
33:05:54Statistical Machine Learning — Ulrike von Luxburg, 2020
统计机器学习 共41课时 1天47分24秒
统计机器学习(张志华)
机器学习导论(张志华) 共42课时 1天4小时6分25秒
应用数学基础(张志华)-北京大学
人工智能 江西理工 罗会兰 共40课时 8小时47分20秒
Python机器学习应用 共27课时 3小时17分52秒
Apprentissage automatique - Université de Sherbrooke
Intelligence Artificielle - Université de Sherbrooke
DeepHack.Turing (2017)
Theoretical Deep Learning Course
麦子学院 深度学习基础介绍 机器学习
麦子学院 深度学习进阶:算法与应用
python数据分析与机器学习实战
机器学习40讲
Machine Learning with Python || Machine Learning for Beginners
Machine Learning Course for Beginners
ML Tutorials
机器学习
数之道系列
【臺大探索第26期】Future of AI:人工智慧大未來
机器学习入门
人人可做的机器学习
人工智能专业课程实验演示
机器学习 生信宝典
程式設計
Machine Learning
AI And Machine Learning Full Course | AI Tutorial | Machine Learning Tutorial 2022 | 11:29:16
AI And Machine Learning Full Course 2022 | AI Tutorial | Machine Learning Tutorial | 9:59:10
Machine Intelligence
Machine Learning for beginners
Artificial Intelligence Lessons
- 以高中職為例
How I'm Learning AI and Machine Learning
Machine Learning
Machine Learning Course - CS 156
Miscellaneous but useful information about deep learning
MACHINE LEARNING
Complete Machine Learning playlist
Harvard CS50’s Artificial Intelligence with Python – Full University Course
机器学习实战---电信客户流失问题
人工智能核心能力培养
Machine Learning
Stanford AA289 - Robotics and Autonomous Systems Seminar
Learn Core Machine Learning for FREE | Ultimate Course for Beginners
B站首推!字节大佬花一周讲完的人工智能,2023公认最通俗易懂的【AI人工智能教程】小白也能信手拈来(人工智能|机器学习|深度学习|CV)等等随便白嫖!
【全1024集】清华大佬关门弟子课程!这波不亏,全程高能,学完即可上岸,拿走不谢!
这绝对是B站最全的了!AI人工智能、机器学习、深度学习、OpenCV、神经网络(附项目实战搭配学习)一口气全都学完! 61:06:06
【整整600集】北大教授196小时讲完的AI人工智能从入门到项目实战全套教程,全程干货无废话!学完变大佬!这还学不会我退出IT圈!机器学习/深度学习/神经网络
人工智能基础-国防科技大学
中国人工智能学会 CAAI
系列交叉论坛
系列交叉论坛 第37期 徐宗本 AI的10个重大数理基础问题
演讲实录丨徐宗本院士:如何突破机器学习的先验假设?
AI与数学:融通共进的时代—徐宗本
Setting Up CUDA, CUDNN, Keras, and TensorFlow on Windows 11 for GPU Deep Learning
【唐宇迪】机器学习600集!机器学习算法精讲及其案例应用,直接看时长!最全最完整的机器学习教程从零基础开始学习!-人工智能/深度学习/机器学习 30:25:37
这也太全了!回归算法、聚类算法、决策树、随机森林、神经网络、贝叶斯算法、支持向量机等十大机器学习算法一口气学完! 29:50:56
林轩田 Hsuan-Tien Lin(, )
Machine Learning Foundations (機器學習基石) 机器学习基石
Machine Learning Techniques (機器學習技法) 机器学习技法
Probabilistic Machine Learning — Philipp Hennig, 2021
[2020] 概率机器学习 [Probabilistic Machine Learning]【生肉】图宾根大学机器学习
【图机器学习Machine Learning with Graphs】精译【Stanford 公开课 CS224W (Fall 2021)】(中英双语字幕) 22:25:02
Stanford CS224W: Machine Learning with Graphs
2024 Fall 台大資訊 深度學習之應用 NTU CSIE ADL
2023 Spring 台大資訊 人工智慧導論 NTU CSIE FAI
2022 Fall 台大資工 深度學習之應用 NTU CSIE ADL
2022 Spring 台大資工 深度學習之應用 NTU CSIE ADL
2021 Spring 台大資工 深度學習之應用 NTU CSIE ADL
2020 Spring 台大資工 深度學習之應用 NTU CSIE ADL
MIT 6.S192: Deep Learning for Art, Aesthetics, and Creativity
Deep Learning & Machine Learning
NVIDIA Deep Learning Course
Deep learning conference
2022 人人有功練:資料科學深度學習
Deep Learning
Learn TensorFlow and Deep Learning (beginner friendly code-first introduction)
Neural Networks from Scratch in Python()
PyTorch for Deep Learning - Full Course / Tutorial 9:41:39
Alexander Amini
ACMSIGGRAPH
Yannic Kilcher
Bay Area Deep Learning School
深度学习能工作的秘密 ():深度神经网络中的隐式自正则化
深度学习理论(斯坦福)
Deep Learning Theories
Deep Learning Tutorials
Deep Learning Applications
Deep Learning
Theoretical Deep Learning
Deep Learning for Computer Architects
DeepLearning - Mitesh Khapra, SKS Iyengar || IIT Ropar and Madras - NPTEL
Deep Learning - Andrew Ng Kian Katanforoosh | Stanford - OnlineHub
Deep Learning - Ali Ghodsi | STAT 946 - U.Waterloo
Deep Learning Course by Sargur N. Srihari
Deep Learning by Sargur N. Srihari
Deep Learning Course
Neural networks class - Université de Sherbrooke
[Coursera] Neural Networks for Machine Learning — Geoffrey Hinton
Deep Learning Crash Course for Beginners
Practical Deep Learning for Coders - Full Course from fast.ai and Jeremy Howard
Neural Networks from Scratch with Python and Opencv
CS294-158 Deep Unsupervised Learning
How Deep Neural Networks Work - Full Course for Beginners
人工智能与机器学习
Intuitive Deep Learning
Deep Learning: CS 182 Spring 2021
NIPS 2016 Deep Learning for Action and Interaction Workshop
Ilya Sutskever: Deep Learning | Lex Fridman Podcast #94
GPT-4 Creator Ilya Sutskever
Ilya Sutskever (OpenAI Chief Scientist) - Building AGI, Alignment, Spies, Microsoft, & Enlightenment
Sam Altman回归!聊聊“叛变者”的恐惧与信念:OpenAI技术灵魂人物Ilya Sutskever
The Robot Brains Podcast Ilya Sutskever
OpenAI到底是一家怎样的公司?
Inside OpenAI [Entire Talk]
OpenAI成长史:顶级资本与科技大佬的理想主义,冲突,抉择与权力斗争;马斯克、奥特曼、纳德拉与比尔·盖茨等人的背后故事【深度】
Deep Learning Basics: Introduction and Overview
MIT 6.S094, Lex Fridman
MIT 6.S094
LEX Fridman MIT Lectures
MIT 6.S094
Complete Deep Learning
深度學習
1102政大【數學軟體應用】(深度學習) 課程
Machine Learning & Neural Networks without Libraries – No Black Box Course
跟李沐学AI(, )
ApacheMXNet(, , )
, , , book(, , )
《动手学深度学习》
v2视频(, ), v2视频(, ),
深度学习论文精读
【李沐】动手学深度学习-pytorch 2021版 数据丢失
Mu Li
跟李沐学AI
() Neural Networks and Deep Learning
() Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization
() Structuring Machine Learning Projects
() Convolutional Neural Networks
() Sequence Models
Python And Data Science Full Course | Data Science With Python Full Course In 12 Hours |
Build 12 Data Science Apps with Python and Streamlit - Full Course()
Dayin HE
分布式项目实战
Data Science - Learn to code for beginners
Intro to Data Science
Python for Data Science
Tools in Scientific Computing
MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
Data Analysis with Python - Full Course for Beginners (Numpy, Pandas, Matplotlib, Seaborn) 4:22:12
Data Analysis Tutorial for Beginners
Data Analysis with Python for Excel Users - Full Course
Build 12 Data Science Apps with Python and Streamlit - Full Course
Data Analysis with Python Course - Numpy, Pandas, Data Visualization
Intro to Data Science - Crash Course for Beginners
Solving real world data science tasks with Python Pandas!
Keynote Jake VanderPlas
Reproducible Data Analysis in Jupyter
Data Mining資料採礦課程
Data Science 101
Learn Data Science Tutorial - Full Course for Beginners
Full Data Science Course
Data Science
Data Science and Machine Learning with Python and R
Polars: The Next Big Python Data Science Library... written in RUST?
Data Science Job Interview – Full Mock Interview
python 数据分析(中国国家精品课程)
Data Science/ML Projects
10x Your Data Science With Polars
The Ultimate Guide to Data Cleaning
斯坦福CS329P:实用机器学习
奥卡姆剃刀原理(ccam's razor) 8:33 entities should not be multi-plied beyond necessity
LightGBM(, , , , )
Dijkstra's Algorithm(, )
XGBoost 中文文档(, )
XGBoost
算法:Xgboost提升算法
XGBoost与LightGBM 数据科学家常用工具大PK——性能与结构
Time Series Forecasting with XGBoost - Use python and machine learning to predict energy consumption
機器學習:使用Python (, )
scikit-learn (sklearn) 0.21.3 官方文档中文版 (, )
Scikit-Learn Python Tutorial | Machine Learning with Scikit-learn
Jake VanderPlas: Machine Learning with Scikit Learn
Real-World Python Machine Learning Tutorial w/ Scikit Learn (sklearn basics, NLP, classifiers, etc)
Learn Scikit Learn
Professional Preprocessing with Pipelines in Python
Precision & Recall in Machine Learning Explained
机器学习Sklearn全套教程(程序员必备) drive
Traditional Machine Learning in Python
Scikit-Learn Tutorial | Machine Learning With Scikit-Learn | Sklearn | Python Tutorial |
Scikit-Learn Course - Machine Learning in Python Tutorial
Scikit-learn Crash Course - Machine Learning Library for Python
Learning Scikit-Learn
Introduction to scikit-learn
Introduction to Python in Google Colab and Introduction to Sci Kit Learn
Python in Data Science for Intermediate
Understanding Pipeline in Machine Learning with Scikit-learn (sklearn pipeline)
Machine learning in Python with scikit-learn
Scikit-Learn Model Pipeline Tutorial
Using Scikit-Learn Pipelines for Data Preprocessing with Python
08预测
Stock Price Prediction & Forecasting with LSTM Neural Networks in Python colab
Rain Prediction | Building Machine Learning Model for Rain Prediction using Kaggle Dataset
Titanic Survival Prediction in Python - Machine Learning Project
Desafio Kaggle: Titanic - Preparando os dados - Parte 1
Logistic Regression with Python | Titanic Data | Your First Kaggle Project |
Kaggle Titanic Survival Prediction Competition Part 1/2 - Exploratory Data Analysis
CART - Classification And Regression Trees
算法:决策树
Decision Tree Classification Clearly Explained!
Linear Regression and Linear Models
【千锋大数据】机器学习之线性回归教程(6集)
18 多元线性回归 南京大学周志华
Logistic Regression
【千锋大数据】机器学习之逻辑回归教程(6集)
線性機率模型 (LPM) 與邏輯斯迴歸 (Logistic Regression)
【Stata小课堂】第24讲:有序多分类Logistic回归(Ordinal Logistic Regression)
Big Data Analysis - Regression
Tutorial 35- Logistic Regression Indepth Intuition- Part 1| Data Science
08逻辑回归算法 课时46逻辑回归算法原理推导 tyd
Logistic Regression - Is it Linear Regression?
Decision Tree Classification Algorithm in Telugu
What is Random Forest?
Random Forests
算法:随机森林与集成算法
一套完整的基于随机森林的机器学习流程(特征选择、交叉验证、模型评估))
Random Forest Algorithm Clearly Explained!
How Do Random Forests Work & What is Ensemble Learning
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision (Machine Learning Research Paper Explained)
MLP Mixer Is All You Need?
MLP-Mixer:一个比ViT更简洁的纯MLP架构 知乎
MLP-Mixer: MLP is all you need... again? ...
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision
Prediction using Artificial Neural Network (MLP) - Predict Car Price
What are MLPs (Multilayer Perceptrons)?
Multilayer Perceptrons - Ep.6 (Deep Learning Fundamentals)
Perceptron Algorithm with Code Example - ML for beginners!
使用KAN网络,更少参数更高准确率,更好的可解释性 替代传统MLP!
Understanding Machine Learning - Shai Ben-David
人工智能案例:聚类实践
ML: Clustering
Numpy: Kmeans Clustering from Scratch
K-means & Image Segmentation -
K-Means Clustering From Scratch in Python (Mathematical)
周志华
算法:线性回归算法
案例实战 信用卡欺诈检测
线性回归 git
How to implement Linear Regression from scratch with Python
高斯过程
Lasso Regression
Lecture 21: LASSO
10b Machine Learning: LASSO Regression
Polynomial Regression in Python
Poisson regression with tidymodels for package vignette counts
Regression Analysis | Full Course
How to do Multiple Linear Regression in Python| Jupyter Notebook|Sklearn
Multivariable Linear Regression using Gradient Descent Algorithm in Python,Step by Step from scratch
Multiple Linear Regression using python and sklearn
Statistics PL15 - Multiple Linear Regression
Linear Regression From Scratch in Python (Mathematical)
简单线性回归简介(simple linear regression )Python统计66——Python程序设计系列169
11 1 简单线性回归的统计描述 11
Bayesian Linear Regression: Simple Linear Regression Review
Bayesian Linear Regression: Distribution of Parameter Estimate
Machine Learning Foundations Course – Regression Analysis
Interpreting Linear Regression Results
线性回归 南京大学周志华
【千锋大数据】3天快速入门机器学习(9集)
How kNN algorithm works Thales
How to implement KNN from scratch with Python
Heart Disease Predictor Model Using KNN Classifier |Machine Learning| Python | Project For Beginners
Implementation of KNN Algorithm using Iris Dataset in Jupyter Notebook |
KNN Algorithm In Machine Learning | KNN Algorithm Using Python | K Nearest Neighbor |
KNN (K-Nearest Neighbor) Algorithm in Telugu
K - Nearest Neighbors - KNN Fun and Easy Machine Learning
Predicting CS:GO Round Winner with Machine Learning
K-Nearest Neighbors Classification From Scratch in Python (Mathematical)
K-Nearest Neighbors Algorithm From Scratch In Python
算法:时间序列AIRMA模型
案例:时间序列预测任务
时间序列分析:用数据做预测(第595期)
时间序列分析 第一讲
数据科学读书会 Book 15 - 时间序列分析 单变量时间序列
Structured Learning 4: Sequence Labeling
Time Series Prediction
Time Series Analysis (Forecasting, Mining, Transformation, Clustering, Classification) + Python code
Data Mining資料採礦課程
Time Series Analysis
02417 Time Series Analysis 2018
02417 Time Series Analysis, Fall 2017
02417 Time series analysis, Fall 2016
Time Series Theory
Multivariate Time Series Forecasting with LSTM using PyTorch and PyTorch Lightning (ML Tutorial)
Multivariate Time Series Forecasting Using LSTM, GRU & 1d CNNs
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jeff Roach
Convolutional neural networks with dynamic convolution for time series classification
Webinar: Time-series Forecasting With Model Types: ARIMAX, FBProphet, LSTM
161 - An introduction to time series forecasting - Part 1
162 - An introduction to time series forecasting - Part 2 Exploring data using python
163 - An introduction to time series forecasting - Part 3 Using ARIMA in python
166 - An introduction to time series forecasting - Part 5 Using LSTM
181 - Multivariate time series forecasting using LSTM
Time Series Analysis (ARIMA) using Python
Time Series Analysis For Rainfall Prediction Using LSTM Model - Explained For Beginners
Time Series Forecasting with XGBoost - Use python and machine learning to predict energy consumption
Time Series Analysis with FB Prophet
Support Vector Machines
算法:线性支持向量机
【千锋大数据】机器学习之SVM教程(9集)
Understanding SVM ,its Type ,Applications and How to use with Python
Support Vector Machine Algorithm in Telugu
Support Vector Machine - How Support Vector Machine Works | SVM In Machine Learning |
Support Vector Machine - SVM - Classification Implementation for Beginners (using python) - Detailed
Support Vector Machine (SVM) Basic Intuition- Part 1| Machine Learning
Kernel Method
Neural Networks
Gradient Boost
Batch Normalization - EXPLAINED!
Optimizers - EXPLAINED!
Liquid Neural Networks
Neural Networks from Scratch with Python and Opencv
How Deep Neural Networks Work - Full Course for Beginners
深度神经网络的工作原理
Stanford Seminar - Incorporating Sample Efficient Monitoring into Learned Autonomy
The Mathematics of Neural Networks
Illustrated Guide to Deep Learning
How are memories stored in neural networks? | The Hopfield Network #SoME2
Hopfield Networks is All You Need (Paper Explained)
Talk | FAIR研究科学家刘壮:高效和可扩展的视觉神经网络架构
深度学习基础介绍 机器学习19 神经网络NN算法
Neural Networks are Decision Trees (w/ Alexander Mattick)
Visualizing and Understanding Deep Neural Networks by Matt Zeiler
GLOM: How to represent part-whole hierarchies in a neural network (Geoff Hinton's Paper Explained)
[DMQA Open seminar] Backbone Network in Deep learning
How to Create a Neural Network (and Train it to Identify Doodles)
Neural Network Primer
10 Tips for Improving the Accuracy of your Machine Learning Models
Neural Networks: Zero to Hero OpenAI 核心成员, 特斯拉自动驾驶
你能不能训练一个GPT类大型语言模型? 安德鲁·卡帕西(Andrej Karpathy)
Neural Network from Scratch | Mathematics & Python Code
Gradient Descent From Scratch in Python - Visual Explanation
Deriving the Ultimate Neural Network Architecture from Scratch #SoME3
神经网络的万能逼近定理已经发展到什么地步了?
Why Neural Networks can learn almost anything
RBF Networks
Lecture 16 - Radial Basis Functions
Mod-01 Lec-27 RBF Neural Network
Mod-01 Lec-28 RBF Neural Network (Contd.)
4 Ways To Visualize Neural Networks in Python
Track your machine learning experiments locally, with W&B Local - Chris Van Pelt
自动微分
MindSpore初学教程
计算图
Recurrent Neural Networks - EXPLAINED!
LSTM Networks - EXPLAINED!
6. Monte Carlo Simulation MIT 6.0002
蒙特卡洛树搜索基础(Monte Carlo Tree Search)
【讀論文】蒙地卡羅 詳細過程 | Monte Carlo Tree Search| 遊戲樹
2 3 蒙特卡洛树搜索
Monte Carlo Tree Search Udacity
Monte Carlo Tree Search (MCTS) Tutorial
蒙特卡洛 Monte Carlo
Monte Carlo Inference
数学_蒙地卡罗法和Buffon needle简介
【数之道 21】随机抽样、蒙特卡洛模拟与逆转换方法
【数之道 22】巧妙使用"接受-拒绝"方法,玩转复杂分布抽样
Monte Carlo simulation for Conditional VaR (Excel)
MATLAB小课堂——如何使用蒙特卡洛模拟进行预测?
Advanced 4. Monte Carlo Tree Search
Tongkui Yu
AI如何下棋?直观了解蒙特卡洛树搜索MCTS!!!
OR 10-2 馬可夫性質與馬可夫鏈(李維OR)
徐亦达机器学习课程 Markov Chain Monte Carlo () ()()()徐亦达
Intro to Reinforcement Learning 强化学习纲要 第二课 马尔科夫决策过程 Bolei Zhou
15讲01 隐马尔科夫模型的基本概念
隐马尔科夫模型
程序数学之随机过程
A friendly introduction to Bayes Theorem and Hidden Markov Models
馬可夫不等式
Lecture 8: Markov Decision Processes (MDPs)
Finite Math: Introduction to Markov Chains
馬可夫鏈基礎1 馬可夫鏈進階1
Hidden Markov Model
程序数学之随机过程
【数之道 20】5分钟理解'马尔可夫链'的遍历性与唯一稳态 Markov Chain's Ergodicity and Stationary Distribution
Lecture 7: Markov Decision Processes - Value Iteration | Stanford CS221: AI (Autumn 2019)
Markov Decision Processes (MDPs) - Structuring a Reinforcement Learning Problem
Stanford教授Daphne Koller 概率图模型 — 终极入门 第讲 马尔可夫网络 (Markov Networks)
Markov Chains Clearly Explained!
用Python介绍马尔可夫链!
[硬核公式推导系列] 蒙特卡洛模拟与MCMC
为什么要使用MCMC方法?
一文读懂贝叶斯推理问题:MCMC方法和变分推断
17讲02 近似推断法:MCMC和变分推断
随机数算法, Sobol列 25:07
基于维特比算法的文本分词 (Greedy Academy)
任务024:分词 维特比算法
Viterbi Algorithm
汉语自然语言处理-维特比算法与NER-命名实体识别-viterbi algorithm-HMM-CRF-概率图模型-动态规划
Decoding Convolutional Codes: The Viterbi Algorithm Explained
The Viterbi Algorithm : Natural Language Processing
(ML 14.11) Viterbi algorithm (part 1)
人工智慧 -- 機率統計法 (HMM 隱碼可夫模型與 viterbi 算法)
STAT115 Chapter 14.6 Viterbi Algorithm
Digital Communications: Viterbi Algorithm
Hidden Markov Models 11: the Viterbi algorithm
第8课 条件随机场与应用 七月在线
16讲02 条件随机场的定义与形式
任务260: CRF介绍
任务390: 利用CRF模型做命名实体识别 01
Conditional Random Fields - Stanford University (By Daphne Koller)
Conditional Random Fields
Lec 9: Conditional Random Fields LUCY Yin
直观讲解因子分解机Factorization Machine
Steffen Rendle. Factorization machines 2010 IEEE
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 2018
Building a Social Network Content Recommendation Service Using Factorisation Machines - Conor Duke
Maximum Entropy Methods Tutorial
Entropy (for data science) Clearly Explained!!!
集成学习
GradientBoost
Ensembles
集成学习 南京大学周志华教授亲讲
How Do Random Forests Work & What is Ensemble Learning
Community Talks on Day 2 | PyTorch Developer Day 2021
Stanford CS330: Deep Multi-Task and Meta Learning
Stanford CS330: Deep Multi-Task & Meta Learning I Autumn 2021I Professor Chelsea Finn
Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022
机器学习自动化调参
神经网络结构搜索 Neural Architecture Search
神经网络(十二) 自动神经网络(AutoML)与网络架构搜索(NAS)
Hyperparameter Tuning in Python with GridSearchCV
ROC Optimal Threshold ► Data Science Exercises #22
AutoML with Auto-Keras (14.1)
169 - Deep Learning made easy with AutoKeras
171 - AutoKeras for image classification using cifar10 data set
Automated Deep Learning with AutoKeras
I tried building a AUTO MACHINE LEARNING Web App 15 Minutes
Neural Architecture Search
Create Simple AutoML System from Scratch
CVPR'20 Interpretable Machine Learning Tutorial
Talk | 微软亚洲研究院王希廷:基于逻辑规则推理的深度自可解释模型
SimCLR
Talk | 剑桥大学在读博士生苏熠暄:对比搜索(Contrastive Search)—当前最优的文本生成算法
MoCo 论文逐段精读【论文精读】 视觉 无监督表示学习 动量对比学习
对比学习论文综述【论文精读】
Meta Learning
Meta Learning
Meta-Learning and One-Shot Learning
Model Agnostic Meta Learning
Learning to learn: An Introduction to Meta Learning
Meta learning by Hugo
Ilya Sutskever: OpenAI Meta-Learning and Self-Play | MIT Artificial General Intelligence (AGI)
各種奇葩的元學習 (Meta Learning) 用法
【機器學習2021】元學習 Meta Learning (一) - 元學習跟機器學習一樣也是三個步驟
【機器學習2021】元學習 Meta Learning (二) - 萬物皆可 Meta
Few Shot Learning - EXPLAINED!
Few-shot learning in production
OpenAI's CLIP for Zero Shot Image Classification
Fast Zero Shot Object Detection with OpenAI CLIP
Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022
Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
神经网络(四) 注意力机制
RNN模型与NLP应用
Transformer模型
【機器學習 2022】各式各樣神奇的自注意力機制 (Self-attention) 變型
Attention in Neural Networks
机器学习常用损失函数小结
机器学习如何选择回归损失函数的?
神经网络的损失函数为什么是非凸的?
Chaoyang He no瞎哔哔
联邦学习:技术角度的讲解(中文)Introduction to Federated Learning
杨强 | 用户隐私,数据孤岛和联邦学习
刘洋丨联邦学习的技术挑战和应用展望
分布式机器学习
FedML联邦机器学习开源框架视频教程全集
[Tutorial] FedML: a research library for federated machine learning
90秒入门联邦学习 Federated learning
什么是联邦学习(Federated Learning)?【知多少】
详解联邦学习Federated Learning - 知乎
联邦学习与个性化联邦学习
5 concepts of A/B testing you should know as a Data Scientist
How to run A/B Tests as a Data Scientist!
AB Testing概览
A/B Testing:轻松Pass二轮面试!AB 测试具体步骤及参数详解,附具体案例演示及结论分析
A/B Testing面试干货: 一个你以为你会但总挡住你拿offer的必学知识点 - A/B测试(第427期)
商业分析师AB测试设计实战技巧,大厂Business Analyst为你实例解析AB Testing(第520期)
AB test calculator (pet project) | Gleb Builds #2
Phoneme Detection with CNN-RNN-CTC Loss Function - Machine Learning
CTC for Offline Handwriting Recognition
F18 Recitation 8: Connectionist Temporal Classification (CTC)
S18 Lecture 14: Connectionist Temporal Classification (CTC)
数据科学读书会 Book 17 – 因果推断 因果效应(Causal Effect)
数据科学读书会 Book 17 - 因果推断-因果推断的公式和模型
探索因果规律之因果推断基础(ft. The Book of Why by Judea Pearl)
因果效应学习基础
《为什么》关于因果关系的新科学
【数之道 04】解决最优路径问题的妙招-蚁群ACO算法
What is an Autoencoder? | Two Minute Papers #86
Simple Explanation of AutoEncoders
Autoencoders - EXPLAINED
What are Autoencoders?
Autoencoders - Ep. 10 (Deep Learning SIMPLIFIED)
85a - What are Autoencoders and what are they used for?
Understanding and Applying Autoencoders in Python!
85b - An introduction to autoencoders - in Python
Autoencoder Dimensionality Reduction Python TensorFlow / Keras #CodeItQuick
Autoencoders Explained Easily
Autoencoders Made Simple!
Variational Autoencoders
Variational Autoencoders - EXPLAINED!
Autoencoder Explained
178 - An introduction to variational autoencoders (VAE)
179 - Variational autoencoders using keras on MNIST data
VAE-GAN Explained!
What are Generative Models? | VAE & GAN | Intro to AI
Build a Stable Diffusion VAE From Scratch using Pytorch
通常在研究贝叶斯模型中,需要去求解一个后验概率(Posterior)分布,但是由于求解过程的复杂性,因此很难根据贝叶斯理论求得后验概率分布的公式精确解,所以一种方法是用一个近似解来替代精确解,并使得近似解和精确解的差别不会特别大。一般求解近似解的方法有两种:第一种是基于随机采样的方法,比如用蒙特卡洛采样法去近似求解一个后验概率分布;第二种就是变分贝叶斯推断法。变分贝叶斯法是一类用于贝叶斯估计和机器学习领域中近似计算复杂积分的技术。它关注的是如何去求解一个近似后验概率分布。
如何简单易懂地理解变分推断(variational inference)?
变分推断与变分自编码器
The EM Algorithm
人工智慧在臺灣:產業轉型的契機與挑戰|陳昇瑋研究員
BUILD and SELL your own A.I Model! $500 - $10,000/month (super simple!)
Machine Learning Projects You NEVER Knew Existed
Data Collection Project Ideas & Demos
ROC and AUC, Clearly Explained!
145 - Confusion matrix, ROC and AUC in machine learning
实操揭秘数据标注项目的套路,有点得罪人了,阅后删
Image Annotation for Machine Learning
RubanSeven/
149 - Working with imbalanced data for ML - Demonstrated using liver disease data
类别不平衡 南京大学周志华
Data Visualization with D3 – Full Course for Beginners [2022]
Data Visualization with D3.js - Full Tutorial Course() 老版本
Other Level’s
DataV Vue
CNN Explainer
dair-ai/
Visualization and Interactive Dashboard in Python: My favorite Python Viz tools — HoloViz
Viz
ContextLab/ 用于获得对高维数据的几何洞察力的 Python 工具箱
Vispy
How to Create a Beautiful Python Visualization Dashboard With Panel/Hvplot
szagoruyko/ colab
Data Visualization Using Python BOKEH | Python Bokeh Dashboard | Full Course
Python数据可视化详解大全-从简单到完善到高级设置(Matplotlib/Seaborn/Plotly/常用统计图形)
Automatically Visualize Datasets with AutoViz in Python
EdrawMax
Python Data Analysis Projects for 2022 | Data Analysis With Python | Python Training |
Build a Media Analysis Dashboard with Python & Cloudinary
Longer lessons
Data Visualisation
Interactive Web Visualizations with Bokeh in Python
Visualizing Binary Data with 7-Segment Displays
🔴 Visualizing Data Structures and Algorithms with VS Code
Data Visualization Tutorial using Qliksense
Data Visualisation
D3 JS - Build Data Driven Visualizations with Javascript [svg animation, data engineering]
Plotnine: A Different Approach To Data Visualization in Python
7 Python Data Visualization Libraries in 15 minutes
Machine Learning Course - Lesson 2: Visualizing Data with JavaScript
Create Interactive Maps & Geospatial Data Visualizations With Python | Real Python Podcast #143
Build a Chart using JavaScript (No Libraries)
Machine Learning Model Evaluation in JavaScript Radu
Machine Learning Course
Tableau in Two Minutes - Tableau Basics for Beginners
How to create Radial Chart in Tableau| Step-by-step
Tableau数据可视化,学完就掌握商业分析必备技能了!(第613期)
Tableau零基础教程
Gourcer
How to Deploy Machine Learning Apps?
Kevin Goetsch | Deploying Machine Learning using sklearn pipelines
Talk | 清华大学在读博士生胡展豪:可以骗过人工智能检测器的隐身衣
Deploy ML Models from Colab with FastAPI & ColabCode - Free ML as a Service
Run Your Flask App In Google Colab | [ Updated Way ]
How to run Google Colab or Kaggle notebooks on VSCODE (My experience running example code on GPU)
Deploying production ML models with TensorFlow Serving overview
Deployment of ML Models
Aladdin Persson
Build & Deploy AI SaaS with Reoccurring Revenue (Next.js, OpenAI, Stripe, Tailwind, Vercel)
How to Deploy a Web App Using Multiple Methods (Azure, Render, MongoDB Atlas, Koyeb, and more )
👍AI 项目本地部署-通用脚本🟢小白都能用 🟢 通吃GitHub上的AI相关项目🟢 Step by Step 一个脚本搞定 🟢 AI项目本地部署保成功
Deploy Python Applications - Google Cloud Run with Docker
Deploy Python Applications From Source - Google Cloud Run
Edge AI 開發板挑選完整指南
NVIDIA TensorRT: High Performance Deep Learning Inference
【AIGC】七千字通俗讲解Stable Diffusion | 稳定扩散模型 | CLIP | UNET | VAE | Dreambooth | LoRA
Talk | 北京大学杨灵:扩散生成模型的方法、关联与应用
Diffusion models explained in 4-difficulty levels
DDPM - Diffusion Models Beat GANs on Image Synthesis (Machine Learning Research Paper Explained)
Ultimate Guide to Diffusion Models | ML Coding Series | Denoising Diffusion Probabilistic Models
Diffusion models
Exploring the NEW Hugging Face Diffusers Package | Diffusion Models w/ Python
Stable Diffusion - What, Why, How? 54:07 colab
由浅入深了解Diffusion Model
Creating Stable Diffusion Interpolation Videos
midjourney
[ML News] Stable Diffusion Takes Over! (Open Source AI Art)
Stable Diffusion AI画图
ERNIE-ViLG s
CompVis/
Harmonai, Dance Diffusion and The Audio Generation Revolution
AI艺术 抖音号: askNK
Google's AI: Stable Diffusion On Steroids! 💪
30年前游戏角色画风一键升级!从粗糙像素风变成高清建模画风
Diffusion Models | Paper Explanation | Math Explained
Diffusion models from scratch in PyTorch
JEPA - A Path Towards Autonomous Machine Intelligence (Paper Explained)
Google's DreamFusion AI: Text to 3D sentdexGoogle's DreamFusion AI: Text to 3D
I tried to build a REACT STABLE DIFFUSION App in 15 minutes
Stable Diffusion Is Getting Outrageously Good! 🤯
Stable Diffusion Version 2: Power To The People… For Free!
[ML News] Multiplayer Stable Diffusion | OpenAI needs more funding | Text-to-Video models incoming
Google's Prompt-to-Prompt: Diffusion Image Editing
Diffusion Model 수학이 포함된 tutorial
Stable Diffusion in Code (AI Image Generation) -
AI换脸,AI去马赛克是如何实现的?初识人工智能大火算法-扩散模型
Diffusion and Score-Based Generative Models
Generative Adversarial Networks (GANs) and Stable Diffusion
Diffusion Models - Live Coding Tutorial
Diffusion Models - Live Coding Tutorial 2.0
Kas Kuo Lab
MIT 6.S192 - Lecture 22: Diffusion Probabilistic Models, Jascha Sohl-Dickstein
Diffusion Models for Inverse Problems
Planning with Diffusion for Flexible Behavior Synthesis
Hierarchically branched diffusion models
Diffusion models as plug-and-play priors
Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications
【stable diffusion】由淺入深了解Diffusion擴散模型 唐宇迪
AI Art Taking World By Storm - Diffusion Models Overview
AI Art for Beginners - Stable Diffusion Crash Course
CS 198-126: Lecture 12 - Diffusion Models
What are Diffusion Models?
Talk | MIT许逸伦:解锁由物理启发的深度生成模型-从扩散模型到泊松流模型
[專題解說] Introduction to Diffusion Model 擴散模型入門 [附程式碼] 教學
號稱打敗 GAN 的生成模型: Diffusion Models
Stable Diffusion Online
CompVis/
AI Art with Stable Diffusion (Women of the World)
最火的AI作图模型,这5款免费下载,含提示词,配合 Stable-diffusion 来制作高清大图吧! |
Generating Realistic AI Images with Stable Diffusion
为什么AI画画能既离谱又烧钱啊??
Stable Diffusion不用獨立顯卡,不需上網連線,10分鐘超簡單安裝教學就把AI繪圖搬回家,有NVIDIA獨顯繪畫更快,Stable Diffusion能單機使用,比Midjourney好用
Lesson 9: Deep Learning Foundations to Stable Diffusion, 2022
由Stabiliti AI在2022年发布的工具 抓取了50亿公开图片, 可以用文字和图片生成图片 colab Chillout_mix
云端AI绘图软件+本地Stable Diffusion免安装版+懒人常用模型包,完全使用攻略-猩猩看了都会用的AI绘图视频教程
AI For You
Easiest Way To Install Stable Diffusion & Generate AI Images
教你用 Google colab 免費玩 Stable Diffusion 作出擬真美女圖片! Lora、ControlNet 教學(iPhone、Android、筆電、Mac 均適用)
Stable Diffusion XL
JW608 Plays With Stable Diffusion!
[Stable Diffusion AI畫圖插件] Composable LoRA加強版! 支援LoCon、LyCORIS,並能讓LoRA只在特定步數作用!
Stable Diffusion教學 使用Lora製作AI網紅
Stable Diffusion 教學
AI绘画】给美女们更换衣服
Stable Diffusion Tutorials, Automatic1111 Web UI & Google Colab Guides, DreamBooth, Textual Inversion / Embedding, LoRA, AI Upscaling, Video to Anime
Stable Diffusion Got Supercharged - For Free!
生成扩散模型漫谈:条件控制生成结果 有参考文献
生成扩散模型漫谈(九):条件控制生成结果
生成扩散模型漫谈(十七):构建ODE的一般步骤(下)
工gin師
DiffusionModel
Stable Diffusion 系列 工
Mac上最好用的StableDiffusion客户端,Draw Things详细演示!The best local AI painting Stable DIffusion client Intro.
Stable Diffusion 進階教學:Colab 如何套 Lora、動漫圖真人化、網拍模特不求人、黑白線稿自動上色
Stable Diffusion教程 从入门到精通
Stable Diffusion 电商系列课程
真人LORA训练全攻略!看这篇就够了 LORA模型 Stable diffusion 教程 真人模型
| 图像生成模型之DDPM | 扩散模型 | 生成模型 | 概率扩散去噪生成模型 | Diffusion Model
MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation
pkuliyi2015/
高清放大插件MultiDiffusion 小显存也能跑出4k图 低配福音
火遍全网的AI大模型,华为能搞出什么新花样?
AI大模型是什么?可以让人工智能和人类一样?GPT-3、M6大模型
#84 LAURA RUIS - Large language models are not zero-shot communicators [NEURIPS UNPLUGGED]
Talk | 微信AI高级研究员苏辉:微信AI大规模预训练语言模型WeLM
Real World Applications of Large Models
Foundation models and the next era of AI
Emily M. Bender — Language Models and Linguistics
多模态论文串讲·上【论文精读】
多模态论文串讲·下【论文精读】
CLIP 论文逐段精读【论文精读】
CLIP 改进工作串讲(上)【论文精读】
CLIP 改进工作串讲(下)【论文精读】
ViLT 论文精读【论文精读】
ViT论文逐段精读【论文精读】 mli/
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)
AI Hairball - ChatGPT + Stable Diffusion
Talk | 东京大学博士生刘海洋:多模态驱动谈话动作生成-质量与多样性
OpenAI CLIP Explained | Multi-modal ML
Fast Zero Shot Object Detection with OpenAI CLIP
OpenAI's CLIP for Zero Shot Image Classification
Fast intro to multi-modal ML with OpenAI's CLIP
OpenAI CLIP: ConnectingText and Images (Paper Explained)
Domain-Specific Multi-Modal Machine Learning with CLIP
CLIP: Connecting Text and Images
OpenAI CLIP - Connecting Text and Images | Paper Explained
OpenAI’s CLIP explained! | Examples, links to code and pretrained model
Talk | 微软高级研究员杨征元:统一的视觉语言模型
Vision Transformer (ViT) 用于图片分类
Vision Transformers (ViT) Explained + Fine-tuning in Python
只有Meta才懂多模态,ImageBind,在一个嵌入的空间中补齐六种模态。像人一样,感受完整的空间。突破语言的桎梏,将关注度重新吸引回元宇宙。
【分享】LLM论文研读 | ImageBind One Embedding Space To Bind Them All | 六种模态大统一 | Kevin分享 | Meta AI
facebookresearch/
ImageBind: a new way to ‘link’ AI across the senses
AI Safety
【機器學習2022】自然語言處理上的對抗式攻擊 (由姜成翰助教講授)
Talk | 清华大学在读博士生胡展豪:可以骗过人工智能检测器的隐身衣
Talk | 几何的魅力: 黑盒攻击新策略
Steven Van Vaerenbergh
CompSci 188
神经网络与深度学习(, , )
复旦大学邱锡鹏教授的《神经网络与深度学习》 19:05:43
HyperDL-Tutorial(, , )
机器学习实战(Machine Learning in Action) (, )
Interpretable Machine Learning (, )
ML Kit 中文文档 (, )
spark机器学习算法研究和源码分析 (, )
ml5.js - Machine Learning for Web (, )
机器学习训练秘籍(Machine Learning Yearning 中文版) (, )
Pipcook v1.0 机器学习工具使用教程 (, )
(, , )
Deeplearning Algorithms Tutorial(深度学习算法教程) (, , )
花书 deeplearningbook(, )
(知乎)
awesome-material
foochane/books
lovingers/ML_Books 差评
深度学习入门-基于Python的理论与实现 deep-learning-from-scratch
【一起啃书】机器学习西瓜书白话解读 13:10:47
周志华《机器学习》学习笔记
南瓜书 datawhalechina/
南京大学周志华教授亲讲 6:20:50
机器学习初步- 南京大学-
机器学习-周志华-学习记录-第一章绪论 csdn
【完整版-南京大学-机器学习】全66讲 58:28:56
南京大学周志华完整版100集【机器学习入门教程】 96:21:52
周志华《机器学习》西瓜书+李航《统计学习方法》 54:56:53
第一章 介绍
第二章 概率
第三章 基于离散数据的生成模型
第四章
第五章
第六章
第七章
第八章
第九章
第十章
第十一章
第十二章
第十三章
第十四章
第十五章
第十六章
第十七章
第十八章
第十九章
第二十章
MingchaoZhu/ 数学推导、原理剖析与源码级别代码实现
求推荐一部以李航的《统计学习方法》为教材的教学视频?
深度之眼《统计学习方法》第二版啃书指导视频 08:55:48
大数据机器学习(袁春) 共113课时 15小时39分33秒
《统计学习方法》第二版的代码实现
《统计学习方法·第2版》手推公式+算法实例+Python实现 22h
统计学习 Statistical Learning
周志华《机器学习》西瓜书+李航《统计学习方法》 54:56:53
PRML/P Matlab code of machine learning algorithms in book PRML
人工智能时代 李开复
2020 Machine Learning Roadmap (still valid for 2021)
Why AI is Harder Than We Think (Machine Learning Research Paper Explained)
Discovering ketosis: how to effectively lose weight
imhuay/studies 学习笔记
25th-engineer/DaChuangFiles
MLEveryday/ 机器学习100天 git
How to Do Freelance AI Programming
Qinbf/
Variational Autoencoders - EXPLAINED!
guillaume-chevalier/
什么是 MLOps?
MLOps
Productionize Your ML Workflows with MLOps Tools
ml-tooling/ 项目包括:机器学习框架、数据可视化、图像、NLP和文本、图、金融领域、时间序列等等,内容非常全
7 FREE A.I. tools for YOU today! (plus 1 bonus!)
The Age of A.I.
The History of Artificial Intelligence [Documentary] Futurology —
Artificial Intelligence: Exploring the Pros and Cons for a Smarter Future
From Deep Learning of Disentangled Representations to Higher-level Cognition
A Fireside Chat with Turing Award Winner Geoffrey Hinton, Pioneer of Deep Learning (Google I/O'19)
Geoff Hinton explains the Forward-Forward Algorithm
Geoff Hinton on Forward-Forward
This Algorithm Could Make a GPT-4 Toaster Possible
Full interview: "Godfather of artificial intelligence" talks impact and potential of AI
Geoffrey Hinton: The Foundations of Deep Learning
深入学习英雄: 吴恩达采访 Geoffrey Hinton
This Canadian Genius Created Modern AI
Andrew Ng: Deep Learning, Education, and Real-World AI | Podcast #73
Andrew Ng: Advice on Getting Started in Deep Learning | AI Podcast Clips
Michael I. Jordan: Machine Learning, Recommender Systems, and Future of AI | Podcast #74
: "A Path Towards Autonomous AI", Baidu 2022-02-22
Yann LeCun: Deep Learning, ConvNets, and Self-Supervised Learning | Podcast #36
Yann LeCun: Dark Matter of Intelligence and Self-Supervised Learning | Podcast #258
Yann LeCun Lecture 8/8 Unsupervised Learning
John Carmack will Develop True Artificial Intelligence. Here is Why
Is ChatGPT A Step Toward Human-Level AI? — With Yann LeCun, Meta Chief AI Scientist
北风网Python人工智能-
北风网Python人工智能-
北风网Python人工智能-
北风网Python人工智能-
北风网Python人工智能-
北风网Python人工智能-
北风网Python人工智能-
北风网Python人工智能-
北风网的大数据时代的
麦子人工智能视频教程(:Python数据分析与建模库)
麦子人工智能视频教程(:机器学习经典算法)
麦子人工智能视频教程(:机器学习案例实战)