🗺️
map
  • 算法地图
  • math
  • CS
    • Python
    • Linux
    • R
    • C/C++
    • 大数据 SQL
    • API
    • Java
    • Swift
    • 数据结构&算法
    • 云计算
    • 量子计算
    • 前端
    • 小程序
    • 音视频
    • 安全
    • Hack
    • 面试
    • cs工具
    • 其他
  • Algorithm
    • ML
    • NLP
    • CV
    • Audio
    • GNN
    • KG
    • GANs
    • RL
    • 自动驾驶
    • 推荐
    • 搜索
    • 量化
    • 区块链
    • 其他
  • Device
    • GPU
    • TPU
    • Android/IOS
    • 鸿蒙
    • 物联网
  • 科学Sci
    • 物理
    • 化学
    • 生物
    • 医学
    • 工科
      • 通信
        • 科学上网
      • 机械工程
      • 电气工程
        • 电子工程
      • 电力工程
      • 土木工程
      • 环境工程
    • 人文社科
      • 文学
      • 历史
      • 哲学
      • 法律
      • 经济
      • 管理学
      • 社会学
      • 心理学
      • 教育学
      • 会计
      • 职场
      • 传统
    • 地理
    • 艺术
      • 美术
      • 摄影
      • 音乐
      • 舞蹈
      • 体育
    • 工具
    • Ai工具
    • 其他
  • other
  • 赞助本站
  • View on Github
  • Star History
由 GitBook 提供支持
在本页
  • 平台
  • ML
  • DL
  • Data Science
  • UP主
  • ML up
  • DL up
  • Data Science up
  • ai工具
  • 框架
  • Tensorflow
  • PyTorch
  • Keras
  • JAX
  • 课程
  • ML
  • DL
  • Data Science
  • 算法
  • 极客学院机器学习训练营
  • scikit-learn (sklearn)
  • 预测
  • 分类
  • 聚类 Clustering 集簇
  • 回归 Regression
  • KNN
  • 时间序列 Time Series
  • 支持向量机 SVM
  • Kernel Method
  • 神经网络, Neural Networks, NN
  • RBF Networks
  • 参数追踪 参数可视化
  • 自动微分 自动求导
  • 计算图
  • RNN Recurrent Neural Networks
  • 蒙特卡洛 Monte Carlo
  • 马尔可夫 马尔科夫 Markov
  • MCMC, Markov Chain Monte Carlo
  • 维特比算法 The Viterbi Algorithm
  • 条件随机场 Conditional Random Fields
  • 因子分解机Factorization Machine, FM
  • 最大熵
  • 集成学习 Ensemble Learning
  • 多任务学习 Multi-task learning
  • AutoML 机器学习自动化调参
  • 机器学习可解释性
  • 对比学习 contrastive learning
  • 少样本学习 Few-Shot Learning Zero Shot One Shot
  • 注意力
  • 损失函数
  • 联邦学习 Federated Learning
  • AB测试 A/B testing
  • CTC
  • 因果推断 Causal inference
  • 蚁群算法
  • Autoencoder
  • VAE Variational Autoencoder
  • 变分推断 Variational Inference
  • 变分自编码
  • EM算法
  • 其他
  • 数据收集
  • 数据标注
  • 数据增强
  • 数据不均衡 imbalanced data
  • 数据可视化
  • 部署 Deploy
  • TensorRT
  • 扩散模型 Diffusion models
  • 基础模型 Foundation Models Large Models
  • 多模态 Multi-modal
  • ImageBind Meta AI
  • AI Safety
  • ML会议
  • CVPR
  • NIPS
  • ICLR
  • ICML
  • ACML
  • NeurIPS
  • MLSP
  • CompSci 188
  • 谷歌学术标签
  • Book
  • 周志华 机器学习 西瓜书
  • MLAPP
  • 花书
  • 百面深度学习
  • 百面机器学习
  • 统计学习方法
  • PRML
  • 其他

这有帮助吗?

  1. Algorithm

ML

机器学习

上一页Algorithm下一页NLP

最后更新于5个月前

这有帮助吗?

平台

ML

图宾根大学机器学习

Quora

AMLD

AMLD指的是Applied Machine Learning Days(应用机器学习日),是一个面向机器学习和人工智能领域的国际会议,也是一个非营利性组织。该组织致力于促进机器学习和人工智能技术的应用和发展,并为学术界、工业界和政府机构提供交流和合作的平台。AMLD成立于2016年,总部位于瑞士日内瓦。该组织定期举办国际会议、研讨会和培训课程,吸引了来自全球各地的学者、研究人员、工程师、企业家和政府官员参加。

DL

Data Science

UP主

ML up

arXiv

arXiv是由康奈尔大学运营的一个非营利性科学论坛,通常科学家在论文正式发表前会预先发到arXiv上防止自己的理论被剽窃.

DL up

fast.ai

Data Science up

ai工具

框架

Long Liangqu

magnet:?xt=urn:btih:F60CCA8F091866C1F6F35460882285386719588B&dn=%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%8EPyTorch%E5%85%A5%E9%97%A8%E5%AE%9E%E6%88%98%E6%95%99%E7%A8%8B

Tensorflow

Tensorflow Object Detection in 5 Hours with Python

[Tutorialsplanet.NET] Udemy - TensorFlow 2.0 Practical Advanced

PyTorch

PyTorch - Python Deep Learning Neural Network API

Deep Learning with PyTorch: Zero to GANs freeCodeCamp

Keras

Deep Learning with TensorFlow 2.0 and Keras

JAX

课程

ML

No Black Box Machine Learning Course – Learn Without Libraries

MIT公开课6.034 人工智能1 (带字幕) 唐逸豪

Stanford CS229: Machine Learning

[Tutorialsplanet.NET] Udemy -Artificial Intelligence with Python

[Tutorialsplanet.NET] Udemy - Machine Learning, Deep Learning and Bayesian Learning

54:47:36

唐宇迪

千锋教育

概率机器学习 Probabilistic Machine Learning

图机器学习 Machine Learning with Graphs


DL

2022 Fall 台大資訊 深度學習之應用 NTU CSIE ADL

MIT 6.S192:艺术、美学和创造力的深度学习

伊利亚·苏茨克沃 苏神 OpenAI的联合创始人和首席科学家

谷歌大脑 人工智能科学家 AlphaGo论文作者之一

Greg Brockman OpenAI CEO CTO

动手学深度学习

动手学深度学习

DeepLearningAI

Deep Learning Specialization

Data Science

数据科学

Python for Data Science - Course for Beginners (Learn Python, Pandas, NumPy, Matplotlib)

数据清理

算法

极客学院机器学习训练营

scikit-learn (sklearn)

预测

Kaggle Titanic Survival Prediction

分类

线性回归 & 线性模型 Linear Regression and Linear Models

多元线性回归, multi variate Linear Regression

逻辑回归 Logistic Regression

决策树

剪支 pruning

随机森林 Random Forests

MLP

KAN

聚类 Clustering 集簇

聚类的"好坏"不存在绝对的标准

寻找标准是关键

常见的聚类方法

原型聚类

亦称"基于原型的聚类"(prototype-based clustering)

假设:聚类结构能够通过一组原型刻画

过程:先对原型初始化, 然后对原型进行迭代更新求解

代表:k均值聚类, 学习向量量化(LVQ), 高斯混合聚类

密度聚类

亦称"基于密度的聚类"(density-based clustering)

假设:聚类结构能够通过样本分布的紧密程度确定

过程:从样本密度的角度来考察样本之间的可连续性, 并基于可连接样本不断扩展聚类蔟

代表:DBSCAN, OPTICS, DENCLUDE

层次聚类(hierarchical clustering)

假设:能够产生不同粒度的聚类结果

过程:在不同层次对数据集进行划分, 从而形成树形的聚类结构

代表:AGNES(自低向上), DIANA(自顶向下)

回归 Regression

KNN

时间序列 Time Series

数据科学读书会 Book 15 – 《Hands-on Time Series Analysis with Python》

Time Series Analysis:Data Scientist是如何做时间序列分析的?(第566期)

Time Series Forecasting Theory

支持向量机 SVM

Kernel Method

神经网络, Neural Networks, NN

万能近似定理(universal approximation theorrm)

RBF Networks

参数追踪 参数可视化

Visualize Neural Networks

自动微分 自动求导

计算图

AI框架之计算图

"图计算"和"计算图"是不同的概念,尽管它们之间有一些关联。

"计算图"通常指的是一种表示计算过程的图形结构,其中节点表示计算操作,边缘表示数据流。它通常被用于深度学习中,以表示神经网络的计算过程。在计算图中,每个节点执行特定的数学运算,并将结果传递给后续节点。这种图形表示方式有助于优化计算和自动求导。

"图计算"是一种计算模型,它使用图形结构来表示和处理数据。它的基本思想是将数据存储为图形结构,然后使用图形算法来处理数据。图计算可以应用于许多领域,例如社交网络分析、推荐系统和生物信息学。

因此,尽管它们之间有一些相似之处,但"图计算"和"计算图"是不同的概念。"计算图"是一种表示计算过程的图形结构,而"图计算"是一种使用图形结构来表示和处理数据的计算模型。

RNN Recurrent Neural Networks

LSTM

蒙特卡洛 Monte Carlo

蒙特卡洛树搜索 Monte Carlo Tree Search (MCTS)

将简单的均匀分布抽样转化为复杂分布抽样的方法:

逆转换方法 Inverse Transform Sampling

接受拒绝抽样 Acceptance Rejection Sampling

马尔可夫 马尔科夫 Markov

[Tutorialsplanet.NET] Udemy - Unsupervised Machine Learning Hidden Markov Models in Python

MCMC, Markov Chain Monte Carlo

基于采样的马尔可夫链蒙特卡罗(Markov Chain Monte Carlo,简称MCMC)方法

Box-Muller算法?

接受拒绝抽样 Acceptance Rejection Sampling

metropolis Hastings

Gibbs Sampling

维特比算法 The Viterbi Algorithm

维特比算法 The Viterbi Algorithm

条件随机场 Conditional Random Fields

条件随机场 Conditional Random Fields

因子分解机Factorization Machine, FM

最大熵

集成学习 Ensemble Learning

三个丑皮匠 顶个诸葛亮

[Tutorialsplanet.NET] Udemy - Ensemble Machine Learning in Python Random Forest, AdaBoost

序列化方法 AdaBoost(Boosting家族) GradientBoost(XGBoost*) LPBoost

异质配准Alignment

并行化方法 Bagging Random Forest* Random Subspace

E = E' - A', diversity is A'

圣杯 "What is diversity" remains the holy grail problem of ensemble learning

多任务学习 Multi-task learning

AutoML 机器学习自动化调参

机器学习可解释性

对比学习 contrastive learning

对比学习(Contrastive Learning)是一种无监督学习方法,旨在通过将相似的样本进行比较来学习有用的表示。在对比学习中,算法试图将来自同一类别的样本分组在一起,并将来自不同类别的样本分开。这可以通过比较两个或多个样本的表示来实现,例如将它们映射到一个低维向量空间中。

对比学习通常用于解决许多计算机视觉问题,例如图像分类、目标检测和语义分割。在这些问题中,通常需要大量的有标签数据来训练模型,而对比学习则提供了一种可以使用无标签数据进行训练的替代方案。

在最近的研究中,对比学习已经被证明在许多任务上具有出色的性能,例如自然语言处理和推荐系统。由于其可扩展性和适应性,对比学习已经成为了当前深度学习领域的一个热门话题。

Momentum Contrast(MoCo)

少样本学习 Few-Shot Learning Zero Shot One Shot

注意力

损失函数

联邦学习 Federated Learning

AB测试 A/B testing

CTC

因果推断 Causal inference

什么是因果推断Causal inference?为什么数据科学家要知道这个?(第612期)

蚁群算法

Autoencoder

VAE Variational Autoencoder

Ali Ghodsi, Lec : Deep Learning, Variational Autoencoder, Oct 12 2017 [Lect 6.2]

变分推断 Variational Inference

Variational Inference: Foundations and Modern Methods (NIPS 2016 tutorial)

变分自编码

EM算法

其他

数据收集

数据标注

label encoding, 把标签变成数字

数据增强

数据不均衡 imbalanced data

过采样, oversampling smote

欠采样, undersampling EasyEnsemble

阈值移动, threshold moving

数据可视化

链接: https://pan.baidu.com/s/1CC6BFfiw0DcyVfYTofmH9A 提取码: r4z3

pyviz

Matplotlib

Plotly

[Tutorialsplanet.NET] Udemy - 2022 Python Data Analysis & Visualization Masterclass

[Tutorialsplanet.NET] Udemy - The Complete Data Visualization Course 2020

Tableau

Tableau 是一个可视化分析平台,它改变了我们使用数据解决问题的方式,使个人和组织能够充分利用自己的数据。

a software version control visualization tool

电子教鞭

inux下netmeeting

红烛电子教鞭

deepin-draw

pointofix

部署 Deploy

TensorRT

TensorRT是英伟达(NVIDIA)推出的深度学习推理加速库,它针对深度学习模型的推理阶段进行了优化。TensorRT(TensorRT是Tensor Runtime的缩写)可以通过高度优化的网络层和推理算法,提供低延迟和高吞吐量的深度学习推理性能。

TensorRT的主要功能包括:

  1. 网络优化:TensorRT可以通过对模型进行层级优化、融合相邻层、剪枝和量化等技术,来提高模型的推理性能。它可以自动检测并融合相似操作,减少了内存带宽和计算需求。

  2. 精度校准:TensorRT支持对模型进行精度校准,从而在保持模型准确性的同时,进一步优化推理性能。它可以通过减少浮点运算的位数或者使用定点数表示来降低计算复杂度。

  3. 动态尺寸支持:TensorRT可以处理具有可变输入尺寸的模型。这意味着可以根据实际输入的尺寸动态调整网络的计算图和内存分配。

  4. 多平台和多框架支持:TensorRT可以与多个深度学习框架(如TensorFlow、PyTorch和Caffe)无缝集成,同时支持多个硬件平台(包括NVIDIA的GPU和DPU)。

使用TensorRT可以显著提高深度学习模型的推理速度和效率,特别适用于需要实时性能的应用场景,如自动驾驶、工业自动化、物体检测和视频分析等。

总之,TensorRT是一个优化深度学习推理的强大工具,它通过网络优化、精度校准和动态尺寸支持等功能,提供高性能的推理加速,从而加快了深度学习模型在实际应用中的部署和执行速度。

TensorRT更加偏向于深度学习模型的部署阶段。它专注于对已经训练好的模型进行优化和加速,以提高模型在推理阶段的性能和效率。

扩散模型 Diffusion models

Stable Diffusion

MultiDiffusion

基础模型 Foundation Models Large Models

多模态 Multi-modal

ImageBind Meta AI

AI Safety

ML会议

CVPR

NIPS

ICLR

ICML

ACML

NeurIPS

MLSP

CompSci 188

谷歌学术标签

Book

周志华 机器学习 西瓜书

南京大学人工智能学院院长周志华《机器学习西瓜书》白话解读,一起啃书! AI技术星球 28:27:48

MLAPP

Machine Learning A Probabilistic Perspective

花书

百面深度学习

百面机器学习

统计学习方法

PRML

ESL

其他

Yoshua Bengio
Geoffrey Hinton
Andrew Ng
Michael I. Jordan
Yann LeCun

Yann LeCun u

NVIDIA(, )

NVIDIA Developer(, , , , )

RE•WORK(, )

MNN - 深度神经网络推理引擎(, , )

Scientific Computing and Artificial Intelligence

MIT OpenCourseWare(, , , , , , , , )

(, )

Theano(, , , , )

XLearning(, , , )

Towards Data Science(, )

天善智能学院(, , )

CityAge Media(, )

SF Python

Zfort Group(, )

KDD2018 video

Компьютерные науки计算机科学(, )

Serrano.Academy

臺大科學教育發展中心CASE

机器学习

中国人工智能学会 CAAI

mechanical coder

台灣機器學習有限公司

Microsoft(, , , )

MOPCON

Vivian NTU MiuLab

Cartesiam

Stanford MLSys Seminars

Center for Language and Speech (CLSP) @ JHU

Stanford HAI

Machine Learning at Berkeley

The Alan Turing Institute

Tübingen Machine Learning

MLSS Iceland 2014 Machine Learning Summer School

Advances in AI(, )

Training Data for Machine Learning(, )

ABC of DataScience and ML(, )

Machine Learning: ML AI(, )

Python & Machine Learning(, )

HW accelerators eating AI(, )

Machine Learning(, )

Machine Learning 93(, )

Data science must needed(, )

Psychology of Machines(, )

Future TEC.(, )

Global AI Platform(, )

AMLD Africa Applied Machine Learning Days

北风网Python人工智能
麦子人工智能视频教程

Carnegie Mellon University Deep Learning

Deep Learning(, )

Supervisely

Ping Data Science(, )

Data Engineering Minds(, )

Data Sciences - Analytics(, )

Data Analytics or EnGines(, )

Data Science in Marketing(, )

迪哥有点愁 , 迪哥谈AI 唐宇迪

sentdex(, , )

Data Application Lab

莫烦Python(, )

将门-TechBeat技术社区(, )

DeepMind(, )

华校专(, , , )

Knowing AI B更多

Dan Van Boxel(, )

Pi School(, )

Siraj Raval(, )

Marc McLean(, )

Sam Gu(, )

Geoff Gordon(, )

AiPhile

Mark Jay(, )

Arxiv Insights(, )

AI壹号堂(, )

yingshaoxo's lab(, )

SuperGqq(, )

Jeff Heaton(, , )

红色石头(, , 微信公众号/微博:AI有道)

Pascal Poupart(, )

艾哈迈德·巴齐(Ahmad Bazzi)(, )

Two Minute Papers(, )

Kai博士(, )

Daniel Bourke(, )

Manisha Sirsat(, )

刘先生(, )

Nicholas Renotte(, )

DigitalSreeni

Applied AI Course(, )

CodeEmporium

帅帅家的人工智障(, )

李宏毅Hung-yi Lee(, , )

深度碎片(, )

DeepPavlov

啥都会一点的研究生(, )

Math4AI(, )

Acsic People(, )

Pantech eLearning(, )

爱可可-爱生活/Guang Chen/fly51fly/

AI Prism(, )

StatQuest with Josh Starmer(, )

The Coding Train

魏博士人工智能 抖音号:

李文哲 抖音号:

AI有啥用 抖音号:

AI技术资讯 抖音号:

好玩的AI 抖音号:

算法工坊 抖音号:

阿里达摩院扫地僧 抖音号:

小乔斯在洛杉矶 抖音号:

MITCBMM

FunInCode

王木头学科学

硅谷吴军 抖音号:

The AI Epiphany

技术喵 

珂学原理

高怡宣老師 

白手起家的百万富翁

William 

李政軒 

人工智能之趋势

Luis Serrano

徐亦达

Art of the Problem

Shusen Wang

Artificial Intelligence - All in One

跨象乘云

Weights & Biases

AICamp

卍卍子非鱼卍卍

Scc_hy

codebasics

人工智慧與數位教育中心 NCCU AIEC

解密遊俠

贪心学院 Greedy AI

Min Yuan

hashtag/

深度之眼官方账号

Learning AI

財團法人人工智慧科技基金會

千锋教育

做大饼馅儿的韭菜

机器学习-白板推导系列 shuhuai008

容噗玩Data

Justin Solomon

WsCube Tech! ENGLISH

Machine Learning with Phil

就是不吃草的羊

Artificial Intelligence and Blockchain

Colin Galen

Si磕AI论文的女算法 抖音号:

When Maths Meet Coding

Artificial Intelligence Society

Dr. Data Science

Pista Academy 波斯语

Parallel Computing and Scientific Machine Learning

William

Machine Learning Street Talk

Dr Alan D. Thompson

Jeremy Howard

Artem Kirsanov

James Briggs

論文導讀

TeachMe AI

Priya Bhatia

大白话AI

Find Interesting AI

Open Data Science

飞桨Paddle(, , (), , , )

Deeplearning.ai(, )

Sung Kim(, )

Leonardo Zhou(, )

Caffe2(, )

deeplearningbook(, , )

DL4J(, )

VisualDL(, , )

Alan Tessier

Alexander Amini(, )

deeplizard(, )

Alex Smola(, )

Lex Fridman(, )

Alena Kruchkova(, )

Alex(, )

Rachel Thomas(, )

Deep Sort(, )

Yannic Kilcher(, (), )

Tien-Lung Sun

茶米老師教室

AI转转转

,

fastbook(, , )

Jeremy Howard — The Story of fast.ai and Why Python Is Not the Future of ML

Jeremy Howard: fast.ai Deep Learning Courses and Research | Podcast #35

Data Professor(, , , , )

Data Science Conference(, )

Data Science Courses(, )

APMonitor.com

Ken Jee

小旭学长

Pepcoding

Amulya's Academy

Yoav Freund

火線班迪 阿石OMP 肥拉超漫flcman

深度学习与PyTorch教程

深度学习与TensorFlow 2入门实战

深度学习与TensorFlow 2

2022 Version of Applications of Deep Neural Networks for TensorFlow and Keras (Washington University in St. Louis)

I built the same model with TensorFlow and PyTorch | Which Framework is better?

AI框架基础

TensorFlow(, , , , , , , , , , , 书栈(, , ), )

jikexueyuanwiki/ TensorFlow官方文档中文版 s 过时

TensorFlow 2.x Insights

TensorFlow2.0 入门到进阶

【北京大学】人工智能 Tensorflow2.0 mocm

人工智能 Tensorflow 视频教程全集| 5 小时从入门到精通

TensorFlow Tutorial 修炼指南

Tensorflow框架

TensorFlow快速入门与实战

TensorFlow 2项目进阶实战

TensorFlow 2.0 Complete Course - Python Neural Networks for Beginners Tutorial 6:52:07 Tech With Tim

TensorFlow 2.0 Crash Course

机器学习从零到一     TensorFlow

TensorFlow Lite 视频系列教程 

深度学习应用开发-TensorFlow实践

TensorFlow 2.0

TensorFlow Lite 视频系列教程

TensorFlow 2 Beginner Course

Deep Learning for JavaScript Hackers | Use TensorFlow.js in the Browser

Made with TensorFlow.js

TensorFlow And Keras Tutorial | Deep Learning With TensorFlow & Keras | Deep Learning |

联想拯救者R9000P安装Ubuntu 21.04系统及运行TensorFlow1.X代码

Tensorflow

Google's Machine Learning Virtual Community Day

TensorFlow Lite for Edge Devices - Tutorial

Android Apps YOLOv4 TFLite Object Detection Android App Tutorial Using YOLOv4 Tiny, YOLOv4, and YOLOv4 Custom

深度学习框架Tensorflow2实战 唐宇迪

Learn TensorFlow and Deep Learning (beginner friendly code-first introduction)

Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 1/2 10:15:27

Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 2/2 3:57:54

Aladdin Persson

Deep Learning for Computer Vision with TensorFlow – Complete Course 1:13:16:40 colab

PyTorch PyTorch(, , , , )

pytorch/ the official PyTorch tutorials

PyTorch for Deep Learning & Machine Learning – Full Course 1:01:37:25

Getting Started With PyTorch (C++)

Image Classification using CNN from Scratch in Pytorch

Neural Network Programming - Deep Learning with PyTorch

Pytorch基础入门

PyTorchZeroToAll (in English)

PyTorch

PyTorch for Deep Learning - Full Course / Tutorial 9:41:39

Deep Learning and Neural Networks with Python and Pytorch

TorchScript and PyTorch JIT | Deep Dive

PyTorch and Monai for AI Healthcare Imaging - Python Machine Learning Course

PyTorch Tutorials - Complete Beginner Course

Introduction to PyTorch Tensors

PyTorch - Deep Learning Course | Full Course | Session -1 | Python

Getting Started With PyTorch (C++)

PyTorch on Apple Silicon | Machine Learning

Invited Talk: - By Facebook Research Scientist Shen Li

7 PyTorch Tips You Should Know

Learn PyTorch for deep learning in a day. Literally. 1:01:36:57

PyTorch Transfer Learning with a ResNet - Tutorial

How to Install PyTorch GPU for Mac M1/M2 with Conda

Saving and Loading a PyTorch Neural Network (3.3)

I Built an A.I. Voice Assistant using PyTorch - part 1, Wake Word Detection

bentrevett/ PyTorch Seq2Seq

PyTorch 深度學習快速入門教程(絕對通俗易懂)| 土堆教程

Python机器学习算法与实战

Python在机器学习中的应用 Daitu/

PyTorch深度学习入门和实战

Machine Learning Course With Python

Deep Learning With PyTorch - Full Course

PyTorch Beginner Series

Pytorch

PyTorch Tutorials (2022)

Pytorch

PyTorch2.0

Pytorch+cpp/cuda extension 教學 tutorial

Aladdin Persson

Install PyTorch for Windows GPU

PyTorch Basics and Gradient Descent |

PyTorch Images and Logistic Regress |

Training Deep Neural Networks on GPUs |

Image Classification with Convolutional Neural Networks |

Data Augmentation, Regularization, and ResNets |

Image Generation using GANs |

PyTorch: Zero to GANs Dhanabhon

Deep Learning with PyTorch: Zero to GANs

Keras(, , , , 文档(, , ), )

Keras - Python Deep Learning Neural Network API

Keras with TensorFlow Course - Python Deep Learning and Neural Networks for Beginners Tutorial

Deep learning using keras in python

Deep Learning with Keras

第一章

第二章

第三章

第四章

第五章

第六章

第七章

第八章

第九章

第十章

JAX

Intro to JAX: Accelerating Machine Learning research

JAX Course

JAX Crash Course - Accelerating Machine Learning code!

JAX Diffusers Community Sprint Talks: Day 1

JAX Diffusers Community Sprint Talks: Day 2

JAX Diffusers Community Sprint Talks: Day 3

JAX talks

Artificial Intelligence (AI) vs Machine Learning vs Deep Learning vs Data Science

机器学习算法地图

Python AI Projects

Radu Mariescu-Istodor

AI 硬體選擇及模型的優化及部署

AI 深度學習軟硬體及框架選擇經驗分享

AppForAI 人工智慧開發工具 Windows 及 Linux 版操作介紹 (淡江大學資管系)

AppForAI-Windows 人工智慧開發工具

Machine Learning Explainability Workshop I Stanford

Machine Learning for Everybody – Full Course

【机器学习 | 理论与实战】 编程 / Python(出品)

Complete Machine Learning and Data Science Courses

MIT 16.412J Cognitive Robotics, Spring 2016

ARTIFICIAL INTELLIGENCE

跟著大師學科技

Machine Learning

人工智能:模型与算法 这个好

人工智能:模型与算法 - 浙江大学

人工智能:模型与算法

With The Authors

Clustering and Segmentation Algorithms explained

Machine Learning Tutorial Python | Machine Learning For Beginners

AI Adventures

Machine Learning Algorithm

Neptune Integrations

【機器學習 2023】(生成式 AI) Autoregressive

【機器學習2022】

【機器學習2021】(中文版)

Next Step of Machine Learning (Hung-yi Lee, NTU, 2019)

Advanced Topics in Deep Learning (Hung-yi Lee, NTU) 2018

Machine Learning (Hung-yi Lee, NTU) 2017

Machine Learning From Scratch In Python - Full Course With 12 Algorithms (5 HOURS)

Machine Learning from Scratch - Python Tutorials Patrick Loeber

Cognitive and AI IBM

MIT 6.034 Artificial Intelligence, Fall 2010

Machine Learning || Part 1

邹博 机器学习  BiteOfPython   bt:机器学习理论研究

小象学院-机器学习班升级版III

Deep learning and machine learning

Kaggle实战课程 小象 

End-To-End Data Science with Kaggle | Competition speed run?

Top Kaggle Solution for Fall 2022 Semester

七月在线 邹博机器学期算法基础2015年 

大数据的统计基础(完) 掘金 

课程-人工智能原理

北京大学__人工智能原理

(35:25:56)

CS188 (Spring 2013) Prof. Pieter Abbeel

(02:50:07)

人工智能导论 浙江工业大学 共80课时 12小时15分33秒

机器学习-浙江大学2021

机器学习-浙江大学(研究生课程) 2017 可以搭配李航《统计学习方法》

Tensorflow for Deep Learning Research(, )

CS480/680 Intro to Machine Learning - Spring 2019 - University of Waterloo

Understanding Machine Learning - Shai Ben David | UWaterloo

CS229: Machine Learning | Summer 2019 (Anand Avati)

Stanford CS229 Machine Learning 2008 吴恩达(Andrew Ng)

机器学习(Machine Learning)吴恩达(Andrew Ng)

吴恩达《2022新版机器学习》课程

【斯坦福大学】深度学习(全192讲)吴恩达 27:19:55

Andrew Ng’s Machine Learning Specialization 2022 | What is it and is it worth taking?

EE104: Introduction to Machine Learning

DMQA Lab Open AI/ML Seminar

Meta Learning

Meta Learning

机器学习-45-ML-01-Meta Learning(元学习)

Stanford CS221: Artificial Intelligence: Principles and Techniques | Autumn 2019

Machine Learning for Computational Fluid Dynamics

CS230: Deep Learning | Autumn 2018

CS545 - Information and Data Analytics Seminar Series(, )

Data Analytics Crash Course: Teach Yourself in 30 Days

Machine Learning

机器能像人一样思考吗?人工智能(一)机器学习和神经网络()

人脸识别啥原理?人工智能(二)卷积神经网络()

人工智能AI求职与技术()

JK

Machine Learning

Machine Learning & Deep Learning Fundamentals

-- Berkeley Spring 2020

(强推)李宏毅2021春机器学习课程

Understanding Machine Learning - Shai Ben-David

CS547 - 人机交互研讨会系列

AI, ML & Data Science - Training | Projects - Pantech E Learning

Artificial Intelligence: Knowledge Representation and Reasoning

July 2019 - Practical Machine Learning with Tensorflow

An Introduction to AI - Mausam | IITD - NPTEL

Statistical Learning - Rob and Trevor Hastie | Stanford

Spring 2015: Statistical Machine Learning (10-702/36-702)

Spring 2017: Statistical Machine Learning (10-702/36-702)

ML - Yaser Abu-Mostafa | Caltech

Machine Learning Course - CS 156

AI - Patrick Winston | MIT

Computation and the Brain - Christos H. Papadimitriou December 26 - 28 2019

有趣的机器学习

机器学习算法基础

机器学习基础配套项目实战课程

机器学习系列课程

机器学习(Machine Learning)吴恩达(Andrew Ng)

Lecture Collection | Machine Learning 吴恩达(Andrew Ng)

机器学习基础:案例研究(华盛顿大学) 共116课时 8小时3分27秒

[2020] 统计机器学习 [Statistical Machine Learning]【生肉】图宾根机器学习

33:05:54Statistical Machine Learning — Ulrike von Luxburg, 2020

统计机器学习 共41课时 1天47分24秒

统计机器学习(张志华)

机器学习导论(张志华) 共42课时 1天4小时6分25秒

应用数学基础(张志华)-北京大学

人工智能 江西理工 罗会兰 共40课时 8小时47分20秒

Python机器学习应用 共27课时 3小时17分52秒

Apprentissage automatique - Université de Sherbrooke

Intelligence Artificielle - Université de Sherbrooke

DeepHack.Turing (2017)

Theoretical Deep Learning Course

麦子学院 深度学习基础介绍 机器学习

麦子学院 深度学习进阶:算法与应用

python数据分析与机器学习实战

机器学习40讲

Machine Learning with Python || Machine Learning for Beginners

Machine Learning Course for Beginners

ML Tutorials

机器学习 

数之道系列

【臺大探索第26期】Future of AI:人工智慧大未來

机器学习入门

人人可做的机器学习

人工智能专业课程实验演示

机器学习 生信宝典

程式設計

Machine Learning

AI And Machine Learning Full Course | AI Tutorial | Machine Learning Tutorial 2022 | 11:29:16

AI And Machine Learning Full Course 2022 | AI Tutorial | Machine Learning Tutorial | 9:59:10

Machine Intelligence

Machine Learning for beginners

Artificial Intelligence Lessons

- 以高中職為例

How I'm Learning AI and Machine Learning

Machine Learning

Machine Learning Course - CS 156

Miscellaneous but useful information about deep learning

MACHINE LEARNING

Complete Machine Learning playlist

Harvard CS50’s Artificial Intelligence with Python – Full University Course

机器学习实战---电信客户流失问题

人工智能核心能力培养

Machine Learning

Stanford AA289 - Robotics and Autonomous Systems Seminar

Learn Core Machine Learning for FREE | Ultimate Course for Beginners

B站首推!字节大佬花一周讲完的人工智能,2023公认最通俗易懂的【AI人工智能教程】小白也能信手拈来(人工智能|机器学习|深度学习|CV)等等随便白嫖!

【全1024集】清华大佬关门弟子课程!这波不亏,全程高能,学完即可上岸,拿走不谢!

这绝对是B站最全的了!AI人工智能、机器学习、深度学习、OpenCV、神经网络(附项目实战搭配学习)一口气全都学完! 61:06:06

【整整600集】北大教授196小时讲完的AI人工智能从入门到项目实战全套教程,全程干货无废话!学完变大佬!这还学不会我退出IT圈!机器学习/深度学习/神经网络

人工智能基础-国防科技大学

中国人工智能学会 CAAI

系列交叉论坛

系列交叉论坛 第37期 徐宗本 AI的10个重大数理基础问题

演讲实录丨徐宗本院士:如何突破机器学习的先验假设?

AI与数学:融通共进的时代—徐宗本

Setting Up CUDA, CUDNN, Keras, and TensorFlow on Windows 11 for GPU Deep Learning

【唐宇迪】机器学习600集!机器学习算法精讲及其案例应用,直接看时长!最全最完整的机器学习教程从零基础开始学习!-人工智能/深度学习/机器学习 30:25:37

这也太全了!回归算法、聚类算法、决策树、随机森林、神经网络、贝叶斯算法、支持向量机等十大机器学习算法一口气学完! 29:50:56

林轩田 Hsuan-Tien Lin(, )

Machine Learning Foundations (機器學習基石) 机器学习基石

Machine Learning Techniques (機器學習技法) 机器学习技法

Probabilistic Machine Learning — Philipp Hennig, 2021

[2020] 概率机器学习 [Probabilistic Machine Learning]【生肉】图宾根大学机器学习

【图机器学习Machine Learning with Graphs】精译【Stanford 公开课 CS224W (Fall 2021)】(中英双语字幕) 22:25:02

Stanford CS224W: Machine Learning with Graphs

2024 Fall 台大資訊 深度學習之應用 NTU CSIE ADL

2023 Spring 台大資訊 人工智慧導論 NTU CSIE FAI

2022 Fall 台大資工 深度學習之應用 NTU CSIE ADL

2022 Spring 台大資工 深度學習之應用 NTU CSIE ADL

2021 Spring 台大資工 深度學習之應用 NTU CSIE ADL

2020 Spring 台大資工 深度學習之應用 NTU CSIE ADL

MIT 6.S192: Deep Learning for Art, Aesthetics, and Creativity

Deep Learning & Machine Learning

NVIDIA Deep Learning Course

Deep learning conference

2022 人人有功練:資料科學深度學習

Deep Learning

Learn TensorFlow and Deep Learning (beginner friendly code-first introduction)

Neural Networks from Scratch in Python()

PyTorch for Deep Learning - Full Course / Tutorial 9:41:39

Alexander Amini

ACMSIGGRAPH

Yannic Kilcher

Bay Area Deep Learning School

深度学习能工作的秘密 ():深度神经网络中的隐式自正则化

深度学习理论(斯坦福)

Deep Learning Theories

Deep Learning Tutorials

Deep Learning Applications

Deep Learning

Theoretical Deep Learning

Deep Learning for Computer Architects

DeepLearning - Mitesh Khapra, SKS Iyengar || IIT Ropar and Madras - NPTEL

Deep Learning - Andrew Ng Kian Katanforoosh | Stanford - OnlineHub

Deep Learning - Ali Ghodsi | STAT 946 - U.Waterloo

Deep Learning Course by Sargur N. Srihari

Deep Learning by Sargur N. Srihari

Deep Learning Course

Neural networks class - Université de Sherbrooke

[Coursera] Neural Networks for Machine Learning — Geoffrey Hinton

Deep Learning Crash Course for Beginners 

Practical Deep Learning for Coders - Full Course from fast.ai and Jeremy Howard

Neural Networks from Scratch with Python and Opencv

CS294-158 Deep Unsupervised Learning

How Deep Neural Networks Work - Full Course for Beginners

人工智能与机器学习

Intuitive Deep Learning

Deep Learning: CS 182 Spring 2021

NIPS 2016 Deep Learning for Action and Interaction Workshop

Ilya Sutskever: Deep Learning | Lex Fridman Podcast #94

GPT-4 Creator Ilya Sutskever

Ilya Sutskever (OpenAI Chief Scientist) - Building AGI, Alignment, Spies, Microsoft, & Enlightenment

Sam Altman回归!聊聊“叛变者”的恐惧与信念:OpenAI技术灵魂人物Ilya Sutskever

The Robot Brains Podcast Ilya Sutskever

OpenAI到底是一家怎样的公司?

Inside OpenAI [Entire Talk]

OpenAI成长史:顶级资本与科技大佬的理想主义,冲突,抉择与权力斗争;马斯克、奥特曼、纳德拉与比尔·盖茨等人的背后故事【深度】

Deep Learning Basics: Introduction and Overview

MIT 6.S094, Lex Fridman

MIT 6.S094

LEX Fridman MIT Lectures

MIT 6.S094

Complete Deep Learning

深度學習

1102政大【數學軟體應用】(深度學習) 課程

Machine Learning & Neural Networks without Libraries – No Black Box Course

跟李沐学AI(, )

ApacheMXNet(, , )

, , , book(, , )

《动手学深度学习》

v2视频(, ), v2视频(, ),

深度学习论文精读

【李沐】动手学深度学习-pytorch 2021版 数据丢失

Mu Li

跟李沐学AI

() Neural Networks and Deep Learning

() Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

() Structuring Machine Learning Projects

() Convolutional Neural Networks

() Sequence Models

Python And Data Science Full Course | Data Science With Python Full Course In 12 Hours |

Build 12 Data Science Apps with Python and Streamlit - Full Course()

Dayin HE

分布式项目实战

Data Science - Learn to code for beginners

Intro to Data Science

Python for Data Science

Tools in Scientific Computing

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016

Data Analysis with Python - Full Course for Beginners (Numpy, Pandas, Matplotlib, Seaborn) 4:22:12

Data Analysis Tutorial for Beginners

Data Analysis with Python for Excel Users - Full Course

Build 12 Data Science Apps with Python and Streamlit - Full Course

Data Analysis with Python Course - Numpy, Pandas, Data Visualization

Intro to Data Science - Crash Course for Beginners

Solving real world data science tasks with Python Pandas!

Keynote Jake VanderPlas

Reproducible Data Analysis in Jupyter

Data Mining資料採礦課程

Data Science 101

Learn Data Science Tutorial - Full Course for Beginners

Full Data Science Course

Data Science

Data Science and Machine Learning with Python and R

Polars: The Next Big Python Data Science Library... written in RUST?

Data Science Job Interview – Full Mock Interview

python 数据分析(中国国家精品课程)

Data Science/ML Projects

10x Your Data Science With Polars

The Ultimate Guide to Data Cleaning

斯坦福CS329P:实用机器学习

奥卡姆剃刀原理(ccam's razor) 8:33 entities should not be multi-plied beyond necessity

LightGBM(, , , , )

Dijkstra's Algorithm(, )

XGBoost 中文文档(, )

XGBoost

算法:Xgboost提升算法

XGBoost与LightGBM 数据科学家常用工具大PK——性能与结构

Time Series Forecasting with XGBoost - Use python and machine learning to predict energy consumption

機器學習:使用Python (, )

scikit-learn (sklearn) 0.21.3 官方文档中文版 (, )

Scikit-Learn Python Tutorial | Machine Learning with Scikit-learn

Jake VanderPlas: Machine Learning with Scikit Learn

Real-World Python Machine Learning Tutorial w/ Scikit Learn (sklearn basics, NLP, classifiers, etc)

Learn Scikit Learn

Professional Preprocessing with Pipelines in Python

Precision & Recall in Machine Learning Explained

机器学习Sklearn全套教程(程序员必备) drive

Traditional Machine Learning in Python

Scikit-Learn Tutorial | Machine Learning With Scikit-Learn | Sklearn | Python Tutorial |

Scikit-Learn Course - Machine Learning in Python Tutorial

Scikit-learn Crash Course - Machine Learning Library for Python

Learning Scikit-Learn

Introduction to scikit-learn

Introduction to Python in Google Colab and Introduction to Sci Kit Learn

Python in Data Science for Intermediate

Understanding Pipeline in Machine Learning with Scikit-learn (sklearn pipeline)

Machine learning in Python with scikit-learn

Scikit-Learn Model Pipeline Tutorial

Using Scikit-Learn Pipelines for Data Preprocessing with Python

08预测

Stock Price Prediction & Forecasting with LSTM Neural Networks in Python colab

Rain Prediction | Building Machine Learning Model for Rain Prediction using Kaggle Dataset

Titanic Survival Prediction in Python - Machine Learning Project

Desafio Kaggle: Titanic - Preparando os dados - Parte 1

Logistic Regression with Python | Titanic Data | Your First Kaggle Project |

Kaggle Titanic Survival Prediction Competition Part 1/2 - Exploratory Data Analysis

CART - Classification And Regression Trees

算法:决策树

Decision Tree Classification Clearly Explained!

Linear Regression and Linear Models

【千锋大数据】机器学习之线性回归教程(6集)

18 多元线性回归 南京大学周志华

Logistic Regression

【千锋大数据】机器学习之逻辑回归教程(6集)

線性機率模型 (LPM) 與邏輯斯迴歸 (Logistic Regression)

【Stata小课堂】第24讲:有序多分类Logistic回归(Ordinal Logistic Regression)

Big Data Analysis - Regression

Tutorial 35- Logistic Regression Indepth Intuition- Part 1| Data Science

08逻辑回归算法 课时46逻辑回归算法原理推导 tyd

Logistic Regression - Is it Linear Regression?

Decision Tree Classification Algorithm in Telugu

What is Random Forest?

Random Forests

算法:随机森林与集成算法

一套完整的基于随机森林的机器学习流程(特征选择、交叉验证、模型评估))

Random Forest Algorithm Clearly Explained!

How Do Random Forests Work & What is Ensemble Learning

MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision (Machine Learning Research Paper Explained)

MLP Mixer Is All You Need?

MLP-Mixer:一个比ViT更简洁的纯MLP架构 知乎

MLP-Mixer: MLP is all you need... again? ...

Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

Prediction using Artificial Neural Network (MLP) - Predict Car Price

What are MLPs (Multilayer Perceptrons)?

Multilayer Perceptrons - Ep.6 (Deep Learning Fundamentals)

Perceptron Algorithm with Code Example - ML for beginners!

使用KAN网络,更少参数更高准确率,更好的可解释性 替代传统MLP!

Understanding Machine Learning - Shai Ben-David

人工智能案例:聚类实践

ML: Clustering

Numpy: Kmeans Clustering from Scratch

K-means & Image Segmentation -

K-Means Clustering From Scratch in Python (Mathematical)

周志华

算法:线性回归算法

案例实战 信用卡欺诈检测

线性回归  git

How to implement Linear Regression from scratch with Python

高斯过程 

Lasso Regression

Lecture 21: LASSO

10b Machine Learning: LASSO Regression

Polynomial Regression in Python

Poisson regression with tidymodels for package vignette counts

Regression Analysis | Full Course

How to do Multiple Linear Regression in Python| Jupyter Notebook|Sklearn

Multivariable Linear Regression using Gradient Descent Algorithm in Python,Step by Step from scratch

Multiple Linear Regression using python and sklearn

Statistics PL15 - Multiple Linear Regression

Linear Regression From Scratch in Python (Mathematical)

简单线性回归简介(simple linear regression )Python统计66——Python程序设计系列169

11 1 简单线性回归的统计描述 11

Bayesian Linear Regression: Simple Linear Regression Review

Bayesian Linear Regression: Distribution of Parameter Estimate

Machine Learning Foundations Course – Regression Analysis

Interpreting Linear Regression Results

线性回归 南京大学周志华

【千锋大数据】3天快速入门机器学习(9集)

How kNN algorithm works Thales

How to implement KNN from scratch with Python

Heart Disease Predictor Model Using KNN Classifier |Machine Learning| Python | Project For Beginners

Implementation of KNN Algorithm using Iris Dataset in Jupyter Notebook |

KNN Algorithm In Machine Learning | KNN Algorithm Using Python | K Nearest Neighbor |

KNN (K-Nearest Neighbor) Algorithm in Telugu

K - Nearest Neighbors - KNN Fun and Easy Machine Learning

Predicting CS:GO Round Winner with Machine Learning

K-Nearest Neighbors Classification From Scratch in Python (Mathematical)

K-Nearest Neighbors Algorithm From Scratch In Python

算法:时间序列AIRMA模型

案例:时间序列预测任务

时间序列分析:用数据做预测(第595期)

时间序列分析 第一讲

数据科学读书会 Book 15 - 时间序列分析 单变量时间序列

Structured Learning 4: Sequence Labeling

Time Series Prediction

Time Series Analysis (Forecasting, Mining, Transformation, Clustering, Classification) + Python code

Data Mining資料採礦課程

Time Series Analysis

02417 Time Series Analysis 2018

02417 Time Series Analysis, Fall 2017

02417 Time series analysis, Fall 2016

Time Series Theory

Multivariate Time Series Forecasting with LSTM using PyTorch and PyTorch Lightning (ML Tutorial)

Multivariate Time Series Forecasting Using LSTM, GRU & 1d CNNs

1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jeff Roach

Convolutional neural networks with dynamic convolution for time series classification

Webinar: Time-series Forecasting With Model Types: ARIMAX, FBProphet, LSTM

161 - An introduction to time series forecasting - Part 1

162 - An introduction to time series forecasting - Part 2 Exploring data using python

163 - An introduction to time series forecasting - Part 3 Using ARIMA in python

166 - An introduction to time series forecasting - Part 5 Using LSTM

181 - Multivariate time series forecasting using LSTM

Time Series Analysis (ARIMA) using Python

Time Series Analysis For Rainfall Prediction Using LSTM Model - Explained For Beginners

Time Series Forecasting with XGBoost - Use python and machine learning to predict energy consumption

Time Series Analysis with FB Prophet

Support Vector Machines

算法:线性支持向量机

【千锋大数据】机器学习之SVM教程(9集)

Understanding SVM ,its Type ,Applications and How to use with Python

Support Vector Machine Algorithm in Telugu

Support Vector Machine - How Support Vector Machine Works | SVM In Machine Learning |

Support Vector Machine - SVM - Classification Implementation for Beginners (using python) - Detailed

Support Vector Machine (SVM) Basic Intuition- Part 1| Machine Learning

Kernel Method

Neural Networks

Gradient Boost

Batch Normalization - EXPLAINED!

Optimizers - EXPLAINED!

Liquid Neural Networks

Neural Networks from Scratch with Python and Opencv

How Deep Neural Networks Work - Full Course for Beginners

深度神经网络的工作原理

Stanford Seminar - Incorporating Sample Efficient Monitoring into Learned Autonomy

The Mathematics of Neural Networks

Illustrated Guide to Deep Learning

How are memories stored in neural networks? | The Hopfield Network #SoME2

Hopfield Networks is All You Need (Paper Explained)

Talk | FAIR研究科学家刘壮:高效和可扩展的视觉神经网络架构

深度学习基础介绍 机器学习19 神经网络NN算法

Neural Networks are Decision Trees (w/ Alexander Mattick)

Visualizing and Understanding Deep Neural Networks by Matt Zeiler

GLOM: How to represent part-whole hierarchies in a neural network (Geoff Hinton's Paper Explained)

[DMQA Open seminar] Backbone Network in Deep learning

How to Create a Neural Network (and Train it to Identify Doodles)

Neural Network Primer

10 Tips for Improving the Accuracy of your Machine Learning Models

Neural Networks: Zero to Hero OpenAI 核心成员, 特斯拉自动驾驶

你能不能训练一个GPT类大型语言模型? 安德鲁·卡帕西(Andrej Karpathy)

Neural Network from Scratch | Mathematics & Python Code

Gradient Descent From Scratch in Python - Visual Explanation

Deriving the Ultimate Neural Network Architecture from Scratch #SoME3

神经网络的万能逼近定理已经发展到什么地步了?

Why Neural Networks can learn almost anything

RBF Networks

Lecture 16 - Radial Basis Functions

Mod-01 Lec-27 RBF Neural Network

Mod-01 Lec-28 RBF Neural Network (Contd.)

4 Ways To Visualize Neural Networks in Python

Track your machine learning experiments locally, with W&B Local - Chris Van Pelt

自动微分

MindSpore初学教程

计算图

Recurrent Neural Networks - EXPLAINED!

LSTM Networks - EXPLAINED!

6. Monte Carlo Simulation MIT 6.0002

蒙特卡洛树搜索基础(Monte Carlo Tree Search) 

【讀論文】蒙地卡羅 詳細過程 | Monte Carlo Tree Search| 遊戲樹

2 3 蒙特卡洛树搜索

Monte Carlo Tree Search Udacity

Monte Carlo Tree Search (MCTS) Tutorial

蒙特卡洛 Monte Carlo

Monte Carlo Inference

数学_蒙地卡罗法和Buffon needle简介

【数之道 21】随机抽样、蒙特卡洛模拟与逆转换方法

【数之道 22】巧妙使用"接受-拒绝"方法,玩转复杂分布抽样

Monte Carlo simulation for Conditional VaR (Excel)

MATLAB小课堂——如何使用蒙特卡洛模拟进行预测?

Advanced 4. Monte Carlo Tree Search

Tongkui Yu

AI如何下棋?直观了解蒙特卡洛树搜索MCTS!!!

OR 10-2 馬可夫性質與馬可夫鏈(李維OR)

徐亦达机器学习课程 Markov Chain Monte Carlo () ()()()徐亦达

Intro to Reinforcement Learning 强化学习纲要 第二课 马尔科夫决策过程 Bolei Zhou

15讲01 隐马尔科夫模型的基本概念 

隐马尔科夫模型 

程序数学之随机过程

A friendly introduction to Bayes Theorem and Hidden Markov Models

馬可夫不等式

Lecture 8: Markov Decision Processes (MDPs)

Finite Math: Introduction to Markov Chains

馬可夫鏈基礎1 馬可夫鏈進階1

Hidden Markov Model

程序数学之随机过程

【数之道 20】5分钟理解'马尔可夫链'的遍历性与唯一稳态 Markov Chain's Ergodicity and Stationary Distribution

Lecture 7: Markov Decision Processes - Value Iteration | Stanford CS221: AI (Autumn 2019)

Markov Decision Processes (MDPs) - Structuring a Reinforcement Learning Problem

Stanford教授Daphne Koller 概率图模型 — 终极入门 第讲 马尔可夫网络 (Markov Networks)

Markov Chains Clearly Explained!

用Python介绍马尔可夫链!

[硬核公式推导系列] 蒙特卡洛模拟与MCMC  

为什么要使用MCMC方法?

一文读懂贝叶斯推理问题:MCMC方法和变分推断

17讲02 近似推断法:MCMC和变分推断

随机数算法, Sobol列 25:07

基于维特比算法的文本分词 (Greedy Academy)

任务024:分词 维特比算法

Viterbi Algorithm

汉语自然语言处理-维特比算法与NER-命名实体识别-viterbi algorithm-HMM-CRF-概率图模型-动态规划

Decoding Convolutional Codes: The Viterbi Algorithm Explained

The Viterbi Algorithm : Natural Language Processing

(ML 14.11) Viterbi algorithm (part 1)

人工智慧 -- 機率統計法 (HMM 隱碼可夫模型與 viterbi 算法)

STAT115 Chapter 14.6 Viterbi Algorithm

Digital Communications: Viterbi Algorithm

Hidden Markov Models 11: the Viterbi algorithm

第8课 条件随机场与应用 七月在线

16讲02 条件随机场的定义与形式

任务260: CRF介绍

任务390: 利用CRF模型做命名实体识别 01

Conditional Random Fields - Stanford University (By Daphne Koller)

Conditional Random Fields

Lec 9: Conditional Random Fields LUCY Yin

直观讲解因子分解机Factorization Machine

Steffen Rendle. Factorization machines 2010 IEEE

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017

xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 2018

Building a Social Network Content Recommendation Service Using Factorisation Machines - Conor Duke

Maximum Entropy Methods Tutorial

Entropy (for data science) Clearly Explained!!!

集成学习

GradientBoost

Ensembles

集成学习 南京大学周志华教授亲讲

How Do Random Forests Work & What is Ensemble Learning

Community Talks on Day 2 | PyTorch Developer Day 2021

Stanford CS330: Deep Multi-Task and Meta Learning

Stanford CS330: Deep Multi-Task & Meta Learning I Autumn 2021I Professor Chelsea Finn

Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022

机器学习自动化调参

神经网络结构搜索 Neural Architecture Search

神经网络(十二) 自动神经网络(AutoML)与网络架构搜索(NAS)

Hyperparameter Tuning in Python with GridSearchCV

ROC Optimal Threshold ► Data Science Exercises #22

AutoML with Auto-Keras (14.1)

169 - Deep Learning made easy with AutoKeras

171 - AutoKeras for image classification using cifar10 data set

Automated Deep Learning with AutoKeras

I tried building a AUTO MACHINE LEARNING Web App 15 Minutes

Neural Architecture Search

Create Simple AutoML System from Scratch

CVPR'20 Interpretable Machine Learning Tutorial

Talk | 微软亚洲研究院王希廷:基于逻辑规则推理的深度自可解释模型

SimCLR

Talk | 剑桥大学在读博士生苏熠暄:对比搜索(Contrastive Search)—当前最优的文本生成算法

MoCo 论文逐段精读【论文精读】 视觉 无监督表示学习 动量对比学习

对比学习论文综述【论文精读】

Meta Learning

Meta Learning

Meta-Learning and One-Shot Learning

Model Agnostic Meta Learning

Learning to learn: An Introduction to Meta Learning

Meta learning by Hugo

Ilya Sutskever: OpenAI Meta-Learning and Self-Play | MIT Artificial General Intelligence (AGI)

各種奇葩的元學習 (Meta Learning) 用法

【機器學習2021】元學習 Meta Learning (一) - 元學習跟機器學習一樣也是三個步驟

【機器學習2021】元學習 Meta Learning (二) - 萬物皆可 Meta

Few Shot Learning - EXPLAINED!

Few-shot learning in production

OpenAI's CLIP for Zero Shot Image Classification

Fast Zero Shot Object Detection with OpenAI CLIP

Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning

神经网络(四) 注意力机制

RNN模型与NLP应用

Transformer模型

【機器學習 2022】各式各樣神奇的自注意力機制 (Self-attention) 變型

Attention in Neural Networks

机器学习常用损失函数小结

机器学习如何选择回归损失函数的?

神经网络的损失函数为什么是非凸的?

Chaoyang He no瞎哔哔

联邦学习:技术角度的讲解(中文)Introduction to Federated Learning

杨强 | 用户隐私,数据孤岛和联邦学习

刘洋丨联邦学习的技术挑战和应用展望

分布式机器学习

FedML联邦机器学习开源框架视频教程全集

[Tutorial] FedML: a research library for federated machine learning

90秒入门联邦学习 Federated learning

什么是联邦学习(Federated Learning)?【知多少】

详解联邦学习Federated Learning - 知乎

联邦学习与个性化联邦学习

5 concepts of A/B testing you should know as a Data Scientist

How to run A/B Tests as a Data Scientist!

AB Testing概览

A/B Testing:轻松Pass二轮面试!AB 测试具体步骤及参数详解,附具体案例演示及结论分析

A/B Testing面试干货: 一个你以为你会但总挡住你拿offer的必学知识点 - A/B测试(第427期)

商业分析师AB测试设计实战技巧,大厂Business Analyst为你实例解析AB Testing(第520期)

AB test calculator (pet project) | Gleb Builds #2

Phoneme Detection with CNN-RNN-CTC Loss Function - Machine Learning

CTC for Offline Handwriting Recognition

F18 Recitation 8: Connectionist Temporal Classification (CTC)

S18 Lecture 14: Connectionist Temporal Classification (CTC)

数据科学读书会 Book 17 – 因果推断 因果效应(Causal Effect)

数据科学读书会 Book 17 - 因果推断-因果推断的公式和模型

探索因果规律之因果推断基础(ft. The Book of Why by Judea Pearl)

因果效应学习基础

《为什么》关于因果关系的新科学

【数之道 04】解决最优路径问题的妙招-蚁群ACO算法

What is an Autoencoder? | Two Minute Papers #86

Simple Explanation of AutoEncoders

Autoencoders - EXPLAINED

What are Autoencoders?

Autoencoders - Ep. 10 (Deep Learning SIMPLIFIED)

85a - What are Autoencoders and what are they used for?

Understanding and Applying Autoencoders in Python!

85b - An introduction to autoencoders - in Python

Autoencoder Dimensionality Reduction Python TensorFlow / Keras #CodeItQuick

Autoencoders Explained Easily

Autoencoders Made Simple!

Variational Autoencoders

Variational Autoencoders - EXPLAINED!

Autoencoder Explained

178 - An introduction to variational autoencoders (VAE)

179 - Variational autoencoders using keras on MNIST data

VAE-GAN Explained!

What are Generative Models? | VAE & GAN | Intro to AI

Build a Stable Diffusion VAE From Scratch using Pytorch

通常在研究贝叶斯模型中,需要去求解一个后验概率(Posterior)分布,但是由于求解过程的复杂性,因此很难根据贝叶斯理论求得后验概率分布的公式精确解,所以一种方法是用一个近似解来替代精确解,并使得近似解和精确解的差别不会特别大。一般求解近似解的方法有两种:第一种是基于随机采样的方法,比如用蒙特卡洛采样法去近似求解一个后验概率分布;第二种就是变分贝叶斯推断法。变分贝叶斯法是一类用于贝叶斯估计和机器学习领域中近似计算复杂积分的技术。它关注的是如何去求解一个近似后验概率分布。

如何简单易懂地理解变分推断(variational inference)?

变分推断与变分自编码器

The EM Algorithm

人工智慧在臺灣:產業轉型的契機與挑戰|陳昇瑋研究員

BUILD and SELL your own A.I Model! $500 - $10,000/month (super simple!)

Machine Learning Projects You NEVER Knew Existed

Data Collection Project Ideas & Demos

ROC and AUC, Clearly Explained!

145 - Confusion matrix, ROC and AUC in machine learning

实操揭秘数据标注项目的套路,有点得罪人了,阅后删

Image Annotation for Machine Learning

RubanSeven/

149 - Working with imbalanced data for ML - Demonstrated using liver disease data

类别不平衡 南京大学周志华

Data Visualization with D3 – Full Course for Beginners [2022]

Data Visualization with D3.js - Full Tutorial Course() 老版本

Other Level’s

DataV Vue 

CNN Explainer

dair-ai/

Visualization and Interactive Dashboard in Python: My favorite Python Viz tools — HoloViz

Viz

ContextLab/ 用于获得对高维数据的几何洞察力的 Python 工具箱

Vispy

How to Create a Beautiful Python Visualization Dashboard With Panel/Hvplot

szagoruyko/ colab

Data Visualization Using Python BOKEH | Python Bokeh Dashboard | Full Course

Python数据可视化详解大全-从简单到完善到高级设置(Matplotlib/Seaborn/Plotly/常用统计图形)

Automatically Visualize Datasets with AutoViz in Python

EdrawMax

Python Data Analysis Projects for 2022 | Data Analysis With Python | Python Training |

Build a Media Analysis Dashboard with Python & Cloudinary

Longer lessons

Data Visualisation

Interactive Web Visualizations with Bokeh in Python

Visualizing Binary Data with 7-Segment Displays

🔴 Visualizing Data Structures and Algorithms with VS Code

Data Visualization Tutorial using Qliksense

Data Visualisation

D3 JS - Build Data Driven Visualizations with Javascript [svg animation, data engineering]

Plotnine: A Different Approach To Data Visualization in Python

7 Python Data Visualization Libraries in 15 minutes

Machine Learning Course - Lesson 2: Visualizing Data with JavaScript

Create Interactive Maps & Geospatial Data Visualizations With Python | Real Python Podcast #143

Build a Chart using JavaScript (No Libraries)

Machine Learning Model Evaluation in JavaScript Radu

Machine Learning Course

Tableau in Two Minutes - Tableau Basics for Beginners

How to create Radial Chart in Tableau| Step-by-step

Tableau数据可视化,学完就掌握商业分析必备技能了!(第613期)

Tableau零基础教程

Gourcer

How to Deploy Machine Learning Apps?

Kevin Goetsch | Deploying Machine Learning using sklearn pipelines

Talk | 清华大学在读博士生胡展豪:可以骗过人工智能检测器的隐身衣

Deploy ML Models from Colab with FastAPI & ColabCode - Free ML as a Service

Run Your Flask App In Google Colab | [ Updated Way ]

How to run Google Colab or Kaggle notebooks on VSCODE (My experience running example code on GPU)

Deploying production ML models with TensorFlow Serving overview

Deployment of ML Models

Aladdin Persson

Build & Deploy AI SaaS with Reoccurring Revenue (Next.js, OpenAI, Stripe, Tailwind, Vercel)

How to Deploy a Web App Using Multiple Methods (Azure, Render, MongoDB Atlas, Koyeb, and more )

👍AI 项目本地部署-通用脚本🟢小白都能用 🟢 通吃GitHub上的AI相关项目🟢 Step by Step 一个脚本搞定 🟢 AI项目本地部署保成功

Deploy Python Applications - Google Cloud Run with Docker

Deploy Python Applications From Source - Google Cloud Run

Edge AI 開發板挑選完整指南

NVIDIA TensorRT: High Performance Deep Learning Inference

【AIGC】七千字通俗讲解Stable Diffusion | 稳定扩散模型 | CLIP | UNET | VAE | Dreambooth | LoRA

Talk | 北京大学杨灵:扩散生成模型的方法、关联与应用

Diffusion models explained in 4-difficulty levels

DDPM - Diffusion Models Beat GANs on Image Synthesis (Machine Learning Research Paper Explained)

Ultimate Guide to Diffusion Models | ML Coding Series | Denoising Diffusion Probabilistic Models

Diffusion models

Exploring the NEW Hugging Face Diffusers Package | Diffusion Models w/ Python

Stable Diffusion - What, Why, How? 54:07 colab

由浅入深了解Diffusion Model

Creating Stable Diffusion Interpolation Videos

midjourney

[ML News] Stable Diffusion Takes Over! (Open Source AI Art)

Stable Diffusion AI画图

ERNIE-ViLG s

CompVis/

Harmonai, Dance Diffusion and The Audio Generation Revolution

AI艺术 抖音号: askNK

Google's AI: Stable Diffusion On Steroids! 💪

30年前游戏角色画风一键升级!从粗糙像素风变成高清建模画风

Diffusion Models | Paper Explanation | Math Explained

Diffusion models from scratch in PyTorch

JEPA - A Path Towards Autonomous Machine Intelligence (Paper Explained)

Google's DreamFusion AI: Text to 3D sentdexGoogle's DreamFusion AI: Text to 3D

I tried to build a REACT STABLE DIFFUSION App in 15 minutes

Stable Diffusion Is Getting Outrageously Good! 🤯

Stable Diffusion Version 2: Power To The People… For Free!

[ML News] Multiplayer Stable Diffusion | OpenAI needs more funding | Text-to-Video models incoming

Google's Prompt-to-Prompt: Diffusion Image Editing

Diffusion Model 수학이 포함된 tutorial

Stable Diffusion in Code (AI Image Generation) -

AI换脸,AI去马赛克是如何实现的?初识人工智能大火算法-扩散模型

Diffusion and Score-Based Generative Models

Generative Adversarial Networks (GANs) and Stable Diffusion

Diffusion Models - Live Coding Tutorial

Diffusion Models - Live Coding Tutorial 2.0

Kas Kuo Lab

MIT 6.S192 - Lecture 22: Diffusion Probabilistic Models, Jascha Sohl-Dickstein

Diffusion Models for Inverse Problems

Planning with Diffusion for Flexible Behavior Synthesis

Hierarchically branched diffusion models

Diffusion models as plug-and-play priors

Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications

【stable diffusion】由淺入深了解Diffusion擴散模型 唐宇迪

AI Art Taking World By Storm - Diffusion Models Overview

AI Art for Beginners - Stable Diffusion Crash Course

CS 198-126: Lecture 12 - Diffusion Models

What are Diffusion Models?

Talk | MIT许逸伦:解锁由物理启发的深度生成模型-从扩散模型到泊松流模型

[專題解說] Introduction to Diffusion Model 擴散模型入門 [附程式碼] 教學

號稱打敗 GAN 的生成模型: Diffusion Models

Stable Diffusion Online

CompVis/

AI Art with Stable Diffusion (Women of the World)

最火的AI作图模型,这5款免费下载,含提示词,配合 Stable-diffusion 来制作高清大图吧! |

Generating Realistic AI Images with Stable Diffusion

为什么AI画画能既离谱又烧钱啊??

Stable Diffusion不用獨立顯卡,不需上網連線,10分鐘超簡單安裝教學就把AI繪圖搬回家,有NVIDIA獨顯繪畫更快,Stable Diffusion能單機使用,比Midjourney好用

Lesson 9: Deep Learning Foundations to Stable Diffusion, 2022

由Stabiliti AI在2022年发布的工具 抓取了50亿公开图片, 可以用文字和图片生成图片 colab Chillout_mix

云端AI绘图软件+本地Stable Diffusion免安装版+懒人常用模型包,完全使用攻略-猩猩看了都会用的AI绘图视频教程

AI For You

Easiest Way To Install Stable Diffusion & Generate AI Images

教你用 Google colab 免費玩 Stable Diffusion 作出擬真美女圖片! Lora、ControlNet 教學(iPhone、Android、筆電、Mac 均適用)

Stable Diffusion XL

JW608 Plays With Stable Diffusion!

[Stable Diffusion AI畫圖插件] Composable LoRA加強版! 支援LoCon、LyCORIS,並能讓LoRA只在特定步數作用!

Stable Diffusion教學 使用Lora製作AI網紅

Stable Diffusion 教學

AI绘画】给美女们更换衣服

Stable Diffusion Tutorials, Automatic1111 Web UI & Google Colab Guides, DreamBooth, Textual Inversion / Embedding, LoRA, AI Upscaling, Video to Anime

Stable Diffusion Got Supercharged - For Free!

​生成扩散模型漫谈:条件控制生成结果 有参考文献

生成扩散模型漫谈(九):条件控制生成结果

生成扩散模型漫谈(十七):构建ODE的一般步骤(下)

工gin師

DiffusionModel

Stable Diffusion 系列 工

Mac上最好用的StableDiffusion客户端,Draw Things详细演示!The best local AI painting Stable DIffusion client Intro.

Stable Diffusion 進階教學:Colab 如何套 Lora、動漫圖真人化、網拍模特不求人、黑白線稿自動上色

Stable Diffusion教程 从入门到精通

Stable Diffusion 电商系列课程

真人LORA训练全攻略!看这篇就够了 LORA模型 Stable diffusion 教程 真人模型

| 图像生成模型之DDPM | 扩散模型 | 生成模型 | 概率扩散去噪生成模型 | Diffusion Model

MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation

pkuliyi2015/

高清放大插件MultiDiffusion 小显存也能跑出4k图 低配福音

火遍全网的AI大模型,华为能搞出什么新花样?

AI大模型是什么?可以让人工智能和人类一样?GPT-3、M6大模型

#84 LAURA RUIS - Large language models are not zero-shot communicators [NEURIPS UNPLUGGED]

Talk | 微信AI高级研究员苏辉:微信AI大规模预训练语言模型WeLM

Real World Applications of Large Models

Foundation models and the next era of AI

Emily M. Bender — Language Models and Linguistics

多模态论文串讲·上【论文精读】

多模态论文串讲·下【论文精读】

CLIP 论文逐段精读【论文精读】

CLIP 改进工作串讲(上)【论文精读】

CLIP 改进工作串讲(下)【论文精读】

ViLT 论文精读【论文精读】

ViT论文逐段精读【论文精读】 mli/

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)

AI Hairball - ChatGPT + Stable Diffusion

Talk | 东京大学博士生刘海洋:多模态驱动谈话动作生成-质量与多样性

OpenAI CLIP Explained | Multi-modal ML

Fast Zero Shot Object Detection with OpenAI CLIP

OpenAI's CLIP for Zero Shot Image Classification

Fast intro to multi-modal ML with OpenAI's CLIP

OpenAI CLIP: ConnectingText and Images (Paper Explained)

Domain-Specific Multi-Modal Machine Learning with CLIP

CLIP: Connecting Text and Images

OpenAI CLIP - Connecting Text and Images | Paper Explained

OpenAI’s CLIP explained! | Examples, links to code and pretrained model

Talk | 微软高级研究员杨征元:统一的视觉语言模型

Vision Transformer (ViT) 用于图片分类

Vision Transformers (ViT) Explained + Fine-tuning in Python

只有Meta才懂多模态,ImageBind,在一个嵌入的空间中补齐六种模态。像人一样,感受完整的空间。突破语言的桎梏,将关注度重新吸引回元宇宙。

【分享】LLM论文研读 | ImageBind One Embedding Space To Bind Them All | 六种模态大统一 | Kevin分享 | Meta AI

facebookresearch/

ImageBind: a new way to ‘link’ AI across the senses

AI Safety

【機器學習2022】自然語言處理上的對抗式攻擊 (由姜成翰助教講授)

Talk | 清华大学在读博士生胡展豪:可以骗过人工智能检测器的隐身衣

Talk | 几何的魅力: 黑盒攻击新策略

Steven Van Vaerenbergh

CompSci 188

神经网络与深度学习(, , )

复旦大学邱锡鹏教授的《神经网络与深度学习》 19:05:43

HyperDL-Tutorial(, , )

机器学习实战(Machine Learning in Action) (, )

Interpretable Machine Learning (, )

ML Kit 中文文档 (, )

spark机器学习算法研究和源码分析 (, )

ml5.js - Machine Learning for Web (, )

机器学习训练秘籍(Machine Learning Yearning 中文版) (, )

Pipcook v1.0 机器学习工具使用教程 (, )

(, , )

Deeplearning Algorithms Tutorial(深度学习算法教程) (, , )

花书 deeplearningbook(, )

(知乎)

awesome-material

foochane/books

lovingers/ML_Books 差评

深度学习入门-基于Python的理论与实现 deep-learning-from-scratch

【一起啃书】机器学习西瓜书白话解读 13:10:47

周志华《机器学习》学习笔记

南瓜书 datawhalechina/

南京大学周志华教授亲讲 6:20:50

机器学习初步- 南京大学-

机器学习-周志华-学习记录-第一章绪论 csdn

【完整版-南京大学-机器学习】全66讲 58:28:56

南京大学周志华完整版100集【机器学习入门教程】 96:21:52

周志华《机器学习》西瓜书+李航《统计学习方法》 54:56:53

第一章 介绍

第二章 概率

第三章 基于离散数据的生成模型

第四章

第五章

第六章

第七章

第八章

第九章

第十章

第十一章

第十二章

第十三章

第十四章

第十五章

第十六章

第十七章

第十八章

第十九章

第二十章

MingchaoZhu/ 数学推导、原理剖析与源码级别代码实现

求推荐一部以李航的《统计学习方法》为教材的教学视频?

深度之眼《统计学习方法》第二版啃书指导视频 08:55:48

大数据机器学习(袁春) 共113课时 15小时39分33秒

《统计学习方法》第二版的代码实现

《统计学习方法·第2版》手推公式+算法实例+Python实现 22h

统计学习 Statistical Learning

周志华《机器学习》西瓜书+李航《统计学习方法》 54:56:53

PRML/P Matlab code of machine learning algorithms in book PRML

人工智能时代 李开复

2020 Machine Learning Roadmap (still valid for 2021)

Why AI is Harder Than We Think (Machine Learning Research Paper Explained)

Discovering ketosis: how to effectively lose weight

imhuay/studies 学习笔记

25th-engineer/DaChuangFiles

MLEveryday/ 机器学习100天 git

How to Do Freelance AI Programming

Qinbf/

Variational Autoencoders - EXPLAINED!

guillaume-chevalier/

什么是 MLOps?

MLOps

Productionize Your ML Workflows with MLOps Tools

ml-tooling/ 项目包括:机器学习框架、数据可视化、图像、NLP和文本、图、金融领域、时间序列等等,内容非常全

7 FREE A.I. tools for YOU today! (plus 1 bonus!)

The Age of A.I.

The History of Artificial Intelligence [Documentary] Futurology —

Artificial Intelligence: Exploring the Pros and Cons for a Smarter Future

From Deep Learning of Disentangled Representations to Higher-level Cognition

A Fireside Chat with Turing Award Winner Geoffrey Hinton, Pioneer of Deep Learning (Google I/O'19)

Geoff Hinton explains the Forward-Forward Algorithm

Geoff Hinton on Forward-Forward

This Algorithm Could Make a GPT-4 Toaster Possible

Full interview: "Godfather of artificial intelligence" talks impact and potential of AI

Geoffrey Hinton: The Foundations of Deep Learning

深入学习英雄: 吴恩达采访 Geoffrey Hinton

This Canadian Genius Created Modern AI

Andrew Ng: Deep Learning, Education, and Real-World AI | Podcast #73

Andrew Ng: Advice on Getting Started in Deep Learning | AI Podcast Clips

Michael I. Jordan: Machine Learning, Recommender Systems, and Future of AI | Podcast #74

: "A Path Towards Autonomous AI", Baidu 2022-02-22

Yann LeCun: Deep Learning, ConvNets, and Self-Supervised Learning | Podcast #36

Yann LeCun: Dark Matter of Intelligence and Self-Supervised Learning | Podcast #258

Yann LeCun Lecture 8/8 Unsupervised Learning

John Carmack will Develop True Artificial Intelligence. Here is Why

Is ChatGPT A Step Toward Human-Level AI? — With Yann LeCun, Meta Chief AI Scientist

北风网Python人工智能-

北风网Python人工智能-

北风网Python人工智能-

北风网Python人工智能-

北风网Python人工智能-

北风网Python人工智能-

北风网Python人工智能-

北风网Python人工智能-

北风网的大数据时代的

麦子人工智能视频教程(:Python数据分析与建模库)

麦子人工智能视频教程(:机器学习经典算法)

麦子人工智能视频教程(:机器学习案例实战)

机器学习AI算法工程
AI之禅
机器之心
ATYUN订阅号
AI科技大本营的专栏
BestSDK
云+直播
砖家王二狗
1-数学基础
2-Python基础
3-Python高级应用
4-机器学习
5-数据挖掘与项目实战
6-深度学习
7-自然语言处理
8-图像处理
Python金融应用实战
砖家王二狗
第一阶段
第二阶段
第三阶段
Long Liangqu
网易云课堂
Long Liangqu
网易云课堂
味道
Long Liangqu
codebasics
SIGAI
towardsdatascience
Mu Li
主页
严伯钧
v
site
paper
github
wiki
pypi
v
机器学习环境配置手册
github
0期课程大纲
课堂商业
千锋教育
Sehn Körting
AssemblyAI
AI Sciences
JAcademy
贪心学院 Greedy AI
William
砖家王二狗
Keith Chugg
Shurui Zhang
B
Iain Explains Signals, Systems, and Digital Comms
ritvikmath
mathematicalmonk
陳鍾誠
Xiaole Shirley Liu
UConn HKN
djp3
4399 gala
MM li
砖家王二狗
砖家王二狗
Machine Learning TV
Natalie Parde
(1/3)
(2/3)
(3/3)
王桂波
csdn
zh
DeepLearning
RMLT
s
zh
Microsoft Research
TensorFlow
Eye on AI
Eye on AI
Edan Meyer
CBS Mornings
Elevate
Preserve Knowledge
Bloomberg Originals
Lex Fridman
Lex Fridman
Lex Fridman
Yann LeCun
Lex Fridman
Lex Fridman
trwappers
Machine Learning with Phil
Alex Kantrowitz
u2b
u2b
s
CUDA
doc
u2b
git
书栈
u
u
s
tw
ins
fb
AI
CS
math
brilliant
v
s
git
pypi
书栈
git
文档
书栈
s
s
u
u
u
u
u
u
u
u
知乎话题
s
wb
engineerknow
u
u
s
research
u
u
u
u
u
u
u
u
u
u
u
quora
quora
quora
quora
quora
quora
quora
quora
quora
quora
quora
quora
u
u
u
quora
u
quora
quora
quora
quora
quora
B
git
bt
B
u2b
pythonprogramming
u
aipin
u2b
u2b
u2b
s
git
AI算法工程师手册
u2b
B
u2b
u2b
u2b
u2b
u2b
u2b
u
u2b
u2b
B
u2b
s
u
git
s
ZH
u
u
u
u
u
quora
u
u
u
u2b
u
B
s
u
B
u
B
B
u
u
B
u
git
u
u
u
Dr.WeiAI
vince88888
2016078732
JiuhuiLi2020
haowandeai
ALGHUB
54saodiseng
Joyceni0610
u
u
B
u
B
wujun001
u
u
u
u
u
u
u
u
u
u
u
u
en
u
u
primo
B
u
doc
s
v
u
B
git
csdn
u
u
u
u
u
machinelearningforbeginners
u
u
u
u
zh
u
B
u
u
u
u
B
u
u
49634887878
u
u
u
u
u
u
csdn
u
u
u
u
u
工gin師
u
u
u
u
u
s
B
OCR
git
book
文档
u2b
u2b
u2b
书栈
s
Taro
书栈
文档
书栈
u
u
u
u2b
u2b
u2b
u2b
andrej karpathy
吴恩达
ryan adams
yisong yue
u2b
Ian Goodfellow
blog
u
git
v
u
u
u
git
git
书栈
Weights & Biases
Lex Fridman
u
fb
medium
git
u
u2b
u
u
u
u
u
u
u
u
u
Jeff Heaton
Python Engineer
ZOMI
site
install
pip
gpu
教程
指南
API
u
models
blog
medium
1
2
tensorflow-zh
EscVM
刘先生
刘先生
bdy
刘先生
Albert's Code Lab
Creat Code Build
开发者学堂
极客时间
极客时间
freeCodeCamp
freeCodeCamp
一
二
三
四
TensorFlow
刘先生
李政轩
TensorFlow
Python Engineer
Venelin Valkov
TensorFlow
Simplilearn
csdn
CloseToAlgoTrading
TensorFlow
freeCodeCamp
TheCodingBug
DayDayUP
Daniel Bourke
Daniel Bourke
Daniel Bourke
u
freeCodeCamp
u
s
doc
tw
fb
medium
github
u
s
中文教程
tutorials
s
freeCodeCamp
Alan Tessier
AI-SPECIALS
deeplizard
覃秉丰
git
Sung Kim
ClarityCoders
freeCodeCamp
sentdex
PyTorch
freeCodeCamp
Python Engineer
Coding Epocs
Tangoo Express
Alan Tessier
Alex Ziskind
PyTorch Distributed (DDP, RPC)
Edan Meyer
Daniel Bourke
langfab
Jeff Heaton
Jeff Heaton
The A.I. Hacker - Michael Phi
pytorch-seq2seq
我是土堆
Adam Sun
zh
Adam Sun
Python-machine-learning
Adam Sun
Siddhardhan
Python Engineer
PyTorch
Krish Naik
Mr. P Solver
Krish Naik
ZOMI
AI葵
u
Jeff Heaton
Part 1 of 6
2 of 6
Part 3 of 6
Part 4 of 6
bk
5 of 6
Part 6 of 6
Subha-asavabhokhin
Jovian
s
git
Sequential
b
en
zh
deeplizard
freeCodeCamp
DigitalSreeni
Krish Naik
神经网络基础以及TF2初探
TensorFlow 1.x and 2.x
回归
卷积神经网络
更高级的卷积神经网络
对抗生成网络
Word Embedding
RNN、Seq2Seq以及各种注意力机制
Auto-encoder 自编码器
无监督学习(PCA,KMeans,RBM,DBN,VAE)
The AI Epiphany
TensorFlow
Weights & Biases
AssemblyAI
HuggingFace
HuggingFace
HuggingFace
HuggingFace
NeuralNine
freeCodeCamp
人工智慧
人工智慧
人工智慧
s
Stanford Online
freeCodeCamp
文刀
B
git
Nicholas Renotte
MIT OpenCourseWare
Crack Concepts
Meta School 元學院
freeCodeCamp
刘先生
drive
刘先生
中国大学MOOC-慕课
Yannic Kilcher
Unfold Data Science
codebasics
Google Cloud Tech
Binod Suman Academy
NeptuneAI
Hung-yi Lee
Hung-yi Lee
s
git
Hung-yi Lee
Hung-yi Lee
Hung-yi Lee
Hung-yi Lee
Python Engineer
Python Engineer
Technology
MIT OpenCourseWare
Geek's Lesson
高级人工智能
曹峰
Xuhui Lin
升级版第七期
机器学习课程(全)
Min Yuan 2015
砖家王二狗
HammerResources
BiteOfPython
Nicholas Renotte
Jeff Heaton
Min Yuan
BiteOfPython
People With_Guitar
知识资源世界(KnowledgeWorld)
中科院高级人工智能全集
Artificial Intelligence
中国科学院大学 高级人工智能 沈华伟 博弈
电子工程世界
刘先生
刘先生
Labhesh Patel
Pascal Poupart
Rahul Madhavan
stanfordonline
Stanford
homemediaplayer2
la fe
NLP从入门到放弃
s
iMuseums
Thu Vu data analytics
stanfordonline
김성범[ 소장 / 인공지능공학연구소 ]
Shusen Wang
Siraj Raval
csdn
stanfordonline
Steve Brunton
stanfordonline
list
freeCodeCamp
PyB TV
NPTEL-NOC IITM
Pantech eLearning
李永乐老师
李永乐老师
BitTiger官方频道 BitTiger Official Channel
机器学习真人面试模拟
人工智能、大数据与复杂系统
Coding Tech
Daniel Bourke
StatQuest with Josh Starmer
mathematicalmonk
Shital Shah
deeplizard
Deep Unsupervised Learning
bilibili
啥都会一点的研究生
帅帅家的人工智障
Machine Learning Theory
斯坦福在线
Pantech eLearning
Artificial Intelligence
Z S
IIT Bombay July 2018
Rahul Madhavan
Rahul Madhavan
Ryan T
Ryan T
Rahul Madhavan
caltech
Rahul Madhavan
CSAChannel IISc
莫烦Python
覃秉丰
git
覃秉丰
git
Lida Yan
la fe
Stanford
git
电子工程世界
B
Tübingen Machine Learning
电子工程世界
刘先生
刘先生
电子工程世界
刘先生
电子工程世界
电子工程世界
Hugo Larochelle
Hugo Larochelle
DeepPavlov
DeepPavlov
开发者学堂
课件
开发者学堂
Yang Liu
Yang Liu
极客时间
Geek's Lesson
freeCodeCamp
AssemblyAI
FunInCode
FunInCode
臺大科學教育發展中心CASE
黑科技老K
git
跨象乘云
跨象乘云
wx
數老的肺炎教室
Elliot Waite
Simplilearn
Simplilearn
Kimia Lab
Learning AI
Dr. Daniel Soper
人工智慧實驗教學課程
macheads101
macheads101
caltech
DigitalSreeni
CSE & IT Tutorials 4u
Krish Naik
freeCodeCamp
DayDayUP
DayDayUP
Luci Date
Stanford Online
Ayush Singh
AI宝库
Python大本营
Python校长
马士兵-人工智能学院
刘先生
s
w
IT大咖说
pdf
zh
csdn
csdn
Jeff Heaton
迪哥谈AI
迪哥AI课堂
u
Hsuan-Tien Lin
电子工程世界
Hsuan-Tien Lin
电子工程世界
KNN
逻辑回归
线性回归
SVM
Tübingen Machine Learning
B
B
Stanford Online
陳縕儂 Vivian NTU MiuLab
陳縕儂 Vivian NTU MiuLab
Vivian NTU MiuLab
Vivian NTU MiuLab
Vivian NTU MiuLab
Vivian NTU MiuLab
Ali Jahanian
KNOWLEDGE DOCTOR
NVIDIA
Sure
茶米老師教室
Binod Suman Academy
Daniel Bourke
sentdex
freeCodeCamp.org
Ian Goodfellow: Generative Adversarial Networks (GANs) | Lex Fridman Podcast #19
MIT 6.S191: Introduction to Deep Learning
深度学习原理与实践(天池)
Deep Learning: A Crash Course
Deep Networks Are Kernel Machines (Paper Explained)
Shubhabrata Sengupta
Why Deep Learning Works
爱可可-爱生活
Changkun Ou
Changkun Ou
Changkun Ou
NPTEL-NOC IITM
迷途小书童
Nilotpal Sinha
Shital Shah
CoffeeBeforeArch
Rahul Madhavan
Rahul Madhavan
Rahul Madhavan
CSAChannel IISc
CSAChannel IISc
NVIDIA Developer
Hugo Larochelle
Colin Reckons
freeCodeCamp
freeCodeCamp
Pysource
Dhanabhon Subha-asavabhokhin
freeCodeCamp
做大饼馅儿的韭菜
深度碎片
RAIL
RAIL
Lex Fridman
Eye on AI
Dwarkesh Patel
硅谷101
u
量子位
Stanford eCorner
硅谷101
Lex Fridman
schung168
adriendod
AR
Lily Z.
Krish Naik
Yen-Lung Tsai
Yen-Lung Tsai
freeCodeCamp
课程安排
Apache MXNet/Gluon 中文频道
B
B
u
s
git
论坛
v1
v2
第二版预览版
B
B
git
Math4AI
u
u
Course 1
Course 2
Course 3
Course 4
Course 5
Heroes of Deep Learning
Heroes of NLP
Simplilearn
freeCodeCamp
数据挖掘
Online learning网络课堂
deeplizard
Steve Brunton
NPTEL-NOC IITM
IIT Kharagpur July 2018
MIT OpenCourseWare
freeCodeCamp
freeCodeCamp
Geek's Lesson
freeCodeCamp
freeCodeCamp
freeCodeCamp
freeCodeCamp
Keith Galli
PyData
Jake Vanderplas
謝邦昌
Data Professor
freeCodeCamp
Learn Python with Rune
freeCodeCamp
Krish Naik
Rob Mulla
freeCodeCamp
华人开放式课程MOOC
JCharisTech
Machine Learning with Phil
书栈
StatQuest with Josh Starmer
开发者学堂
Data Application Lab
Medallion Data Science
scikit-learn.org
书栈
书栈
ProgrammingKnowledge
PyData
Keith Galli
Normalized Nerd
NeuralNine
NeuralNine
千锋教育
DigitalSreeni
Simplilearn
freeCodeCamp
freeCodeCamp
Google Cloud Tech
Lander Analytics
Veronica Red
learndataa
Dr. Data Science
Data School
Greg Hogg
Nicholas Renotte
Greg Hogg
SPOTLESS TECH
NeuralNine
DevVerso [BR]
Analytics Summit
Jason Chong
StatQuest with Josh Starmer
开发者学堂
Normalized Nerd
StatQuest with Josh Starmer
千锋教育
Darics
StatQuest with Josh Starmer
千锋教育
張翔老師
Mingyu Zhang
李政軒
Krish Naik
互联网开发教程
CodeEmporium
CSE & IT Tutorials 4u
IBM Technology
StatQuest with Josh Starmer
开发者学堂
生信宝典
Normalized Nerd
NeuralNine
arxiv
towardsdatascience
git
git
medium
reddit
reddit
arxiv-vanity
programmersought
Yannic Kilcher
towardsdatascience
morioh
陀飞轮
mchromiak
pythonrepo
Roy Jafari
IBM Technology
Power H
Python Simplified
Find Interesting AI
Theory of Clustering
开发者学堂
Data analysis with Python - Spring 2020
colab
git
GNT Learning
Computerphile
NeuralNine
Darics
开发者学堂
开发者学堂
Ouyang Ruofei
AssemblyAI
v
Udacity
Anders Munk-Nielsen
GeostatsGuy Lectures
NeuralNine
Julia Silge
DATAtab
Megha Narang
PAUL ACADEMY
Krish Naik
Brandon Foltz
NeuralNine
Andrew 程序设计
医学统计学-郝元涛(中山大学)
Lazy Programmer
Lazy Programmer
freeCodeCamp
Sergio Garcia, PhD
Darics
Simplilearn
CSE & IT Tutorials 4u
Augmented Startups
NeuralNine
NeuralNine
The Teen Innovator
开发者学堂
开发者学堂
Data Application Lab
Data Application Lab
v
Hung-yi Lee
Siraj Raval
Data Application Lab
Hadi Fanaee
git
謝邦昌
ritvikmath
Lasse Engbo Christiansen
Lasse Engbo Christiansen
Lasse Engbo Christiansen
Analytics University
Venelin Valkov
Greg Hogg
PyData
Krisztian Buza
NeptuneAI
DigitalSreeni
DigitalSreeni
DigitalSreeni
DigitalSreeni
DigitalSreeni
Tathya Bislesan
AI Sciences
Medallion Data Science
JCharisTech
StatQuest with Josh Starmer
开发者学堂
千锋教育
engineerknow
CSE & IT Tutorials 4u
Simplilearn
Cloud and ML Online
Krish Naik
李政軒
StatQuest with Josh Starmer
StatQuest with Josh Starmer
CodeEmporium
CodeEmporium
MITCBMM
Pysource
freeCodeCamp
Brandon Rohrer
Stanford Online
Art of the Problem
The A.I. Hacker - Michael Phi
Layerwise Lectures
Yannic Kilcher
将门-TechBeat技术社区
开发者学堂
git
Yannic Kilcher
Data Council
Yannic Kilcher
Sejin Sim
Sebastian Lague
Luci Date
Jeff Heaton
Andrej Karpathy
基地
The Independent Code
NeuralNine
Algorithmic Simplicity
zh
Emergent Garden
s
macheads101
caltech
nptelhrd
nptelhrd
JCharisTech
Weights & Biases
search
ZOMI
ZOMI
ZOMI
CodeEmporium
CodeEmporium
MIT OpenCourseWare
技术喵
K66
中国大学MOOC-慕课
s
1
2
Fullstack Academy
Shusen Wang
徐亦达
PengTitus
FunInCode
FunInCode
NEDL
MATLAB
MIT OpenCourseWare
u
图灵鸡科技俱乐部
小卒數理學堂
part 1
part 2
3
4
上
下
MM li
Ouyang Ruofei
Jomy King
Serrano.Academy
Luis Serrano
CUSTCourses
CS188Spring2013
Brandon Foltz
Chen Kiwii
Chen Kiwii
徐亦达
Jomy King
csdn
FunInCode
stanfordonline
deeplizard
三
pdf
Normalized Nerd
Adrian Dolinay
技术喵
git
zh
zh
MM li
v
技术喵
pdf
arxiv
arxiv
Python Ireland
Complexity Explorer
StatQuest with Josh Starmer
Ouyang Ruofei
Ouyang Ruofei
Luci Date
Darics
NeuralNine
PyTorch
stanfordonline
Stanford Online
Stanford Online
Ouyang Ruofei
Shusen Wang
技术喵
NeuralNine
Gleb Mikhaylov
Jeff Heaton
DigitalSreeni
DigitalSreeni
Data Heroes
Nicholas Renotte
Connor Shorten
Jeff Heaton
Bolei Zhou
将门-TechBeat技术社区
sota
将门-TechBeat技术社区
Mu Li
Mu Li
Shusen Wang
Siraj Raval
macheads101
Siavash Khodadadeh
Machine Learning TV
yet Shell
Lex Fridman
Hung-yi Lee
Hung-yi Lee
Hung-yi Lee
CodeEmporium
HuggingFace
James Briggs
James Briggs
Stanford Online
The Global NLP Lab
技术喵
Shusen Wang
Shusen Wang
Hung-yi Lee
CodeEmporium
u
B
Shusen Wang
清华大学智能产业研究院
清华大学智能产业研究院
Shusen Wang
Chaoyang He
Chaoyang He
微软智汇AI
KnowingAI知智
机器朗读
感知互联与数据智能
CodeEmporium
CodeEmporium
课代表立正
Data Application Lab
Data Application Lab
Data Application Lab
Gleb Mikhaylov
Ali Yektaie
Oliver Nina
u
u
Data Application Lab
Data Application Lab
Data Application Lab
技术喵
技术喵
每天听书 Wise AudioBooks
FunInCode
Two Minute Papers
WelcomeAIOverlords
CodeEmporium
IBM Technology
DeepLearning.TV
DigitalSreeni
Spencer Pao
DigitalSreeni
Greg Hogg
Valerio Velardo - The Sound of AI
Professor Ryan
Data Science Courses
Arxiv Insights
CodeEmporium
Siraj Raval
DigitalSreeni
DigitalSreeni
Connor Shorten
Zhuoyue Lyu
freeCodeCamp
s
Steven Van Vaerenbergh
zh
s
Peter Green
中央研究院Academia Sinica
Code with Ania Kubów
Nicholas Renotte
Tech With Tim
StatQuest with Josh Starmer
DigitalSreeni
月下跑项目
Apeer_micro
Text-Image-Augmentation-python
DigitalSreeni
Darics
freeCodeCamp
freeCodeCamp
Tutorial: Real Time Data Visualization - d3, crossfilter, websockets in Python by Example
u
git
v
s
v
ml-visuals
doc
wx
Sophia Yang
Sophia Yang
hypertools
s
git
Thu Vu data analytics
pytorchviz
Tangoo Express
云开见明教育科技
NeuralNine
v
Simplilearn
Patrick Loeber
storytelling with data
Luci Date
NeuralNine
Sebastian Lague
Visual Studio Code
Krish Naik
Luci Date
Build Apps With Paulo
NeuralNine
Rob Mulla
Radu Mariescu-Istodor
Real Python
Radu Mariescu-Istodor
Mariescu-Istodor
Radu Mariescu-Istodor
Penguin Analytics
Megha Narang
Data Application Lab
未明学院
s
u
Normalized Nerd
PyData
将门-TechBeat技术社区
1littlecoder
Cyber Creed
convergeML
TensorFlow
Krish Naik
u
freeCodeCamp
freeCodeCamp
NiuGee AI
NeuralNine
NeuralNine
VisCircuit 電路筆記
NVIDIA Developer
最佳拍档
将门-TechBeat技术社区
AssemblyAI
Yannic Kilcher
The AI Epiphany
The AI Epiphany
Nicholas Renotte
Edan Meyer
ewrfcas
sentdex
v
Yannic Kilcher
LKs OFFICIAL CHANNEL
s
s
git
stable-diffusion
v
Hugging Face
Weights & Biases
1764700788
u
Two Minute Papers
量子位
Outlier
DeepFindr
Yannic Kilcher
sentdex
Nicholas Renotte
Two Minute Papers
Two Minute Papers
Yannic Kilcher
sentdex
디퓨전영상올려야지
Computerphile
基地
MITCBMM
TensorFlow
dtransposed
dtransposed
u
Ali Jahanian
Inference & Control Group
Inference & Control Group
Inference & Control Group
Inference & Control Group
Arash Vahdat
HKCTO
deeplizard
deeplizard
Machine Learning at Berkeley
Ari Seff
将门-TechBeat技术社区
工gin師
TJWei
s
stable-diffusion
deeplizard
零度解说
NeuralNine
量子位
老阿貝
Jeremy Howard
u
civitai
番茄市常听
u
NeuralNine
電腦王阿達
v
JW608
張宇帆
Kas Kuo Lab
Kas Kuo Lab
零度解说
SECourses
Two Minute Papers
PaperWeekly
spaces
spaces
u
工gin師
gin師
工具狂Toolbuddy
電腦王阿達
氪学家
氪学家
阿硕讲AI
大白话AI
s
arxiv
git
multidiffusion-upscaler-for-automatic1111
赛博法师
老石谈芯
啃芝士
Machine Learning Street Talk
将门-TechBeat技术社区
Weights & Biases
Microsoft Research
Weights & Biases
Mu Li
跟李沐学AI
Mu Li
Mu Li
Mu Li
Mu Li
Mu Li
Mu Li
paper-reading
Yannic Kilcher
deeplizard
将门-TechBeat技术社区
James Briggs
James Briggs
James Briggs
James Briggs
Yannic Kilcher
Pinecone
Connor Shorten
Aleksa Gordić - The AI Epiphany
AI Coffee Break with Letitia
将门-TechBeat技术社区
Shusen Wang
James Briggs
老范讲故事
最佳拍档
arxiv
ImageBind
meta
Times Infinity
Hung-yi Lee
1
2
将门-TechBeat技术社区
将门-TechBeat技术社区
u
Shital Shah
machine_learning
artificial_intelligence
deep_learning
data_science
high_performance_computing
statistical_data_analysis
particle_physics
quantum_computing
physics
time_series_analysis
optimization
control
time_series
algorithms
control_systems
control_theory
mathematics
mathematical_optimization
statistics
signal_processing
information_theory
probability
computer_science
finance
fpga
cryptography
game_theory
traveling_salesman_problem
swarm_intelligence
data_mining
swarm_robotics
ai
econometrics
evolutionary_robotics
reinforcement_learning
neural_networks
autonomous_cars
generative_models
variational_inference
monte_carlo_simulation
computer_vision
pattern_recognition
software_architecture
medical_imaging
graph
big_data
image_restoration
statistical_modeling
image_compression
image_and_video_coding
data_compression
multimedia_coding
compression
high_resolution_imaging
s
翻译
人工智能学习室
git
书栈
书栈
书栈
书栈
书栈
书栈
书栈
书栈
DeepLearning-500-questions
jd
2
书栈
git
s
神经网络的损失函数为什么是非凸的?
git
git
git
git
致敬大神
书栈
git
git
pumpkin-book
s
Darics
学堂在线
小瘪️
OpenCV图像处理
人工智能-研究所
CV前沿与深度学习
一
二
三
四
一
二
三
四
一
二
三
高斯模型
贝叶斯方法
频率统计方法
线性回归
逻辑回归
广义线性模型
有向图模型
混合模型与EM算法
隐线性模型
稀疏线性模型
Kernels
Gaussian Process
自适应基函数模型
隐马尔可夫模型
状态空间模型
无向图模型
图模型的确切推断
知乎
深度之眼官方账号
电子工程世界
MM li
git
喜欢AI的程序猿
Stanford Online
CV前沿与深度学习
Acsic People
Daniel Bourke
Yannic Kilcher
git
git
git
100-Days-Of-ML-Code
en
topic
git
git
Siraj Raval
deeplearning_paper
CodeEmporium
Awesome-Deep-Learning-Resources
Morgan Yong
Aleksa Gordić - The AI Epiphany
Weights & Biases
best-of-ml-python
Artificial Intelligence and Blockchain
YouTube Originals
An Optimistic Future
Things to Know
31MB
深度学习.pdf
pdf
57MB
百面深度学习:算法工程师带你去面试_.pdf
pdf
25MB
百面机器学习算法工程师带你去面试.pdf
pdf