ML

机器学习

机器学习AI算法工程arrow-up-right

AI之禅arrow-up-right 机器之心arrow-up-right ATYUN订阅号arrow-up-right AI科技大本营的专栏arrow-up-right BestSDKarrow-up-right 云+直播arrow-up-right

平台

ML

RE•WORK(u2barrow-up-right, )

MNN - 深度神经网络推理引擎(gitarrow-up-right, 书栈arrow-up-right, )

天善智能学院(sarrow-up-right, uarrow-up-right, )

CityAge Media(uarrow-up-right, )

SF Python uarrow-up-right

Zfort Group(uarrow-up-right, )

KDD2018 video uarrow-up-right

Компьютерные науки计算机科学(uarrow-up-right, )

Serrano.Academy uarrow-up-right

臺大科學教育發展中心CASE uarrow-up-right

中国人工智能学会 sarrow-up-right CAAI wbarrow-up-right

台灣機器學習有限公司 uarrow-up-right

Vivian NTU MiuLab uarrow-up-right

Cartesiam uarrow-up-right

Stanford MLSys Seminars uarrow-up-right

Center for Language and Speech (CLSP) @ JHU uarrow-up-right

Stanford HAI uarrow-up-right

Machine Learning at Berkeley uarrow-up-right

The Alan Turing Institute uarrow-up-right

Tübingen Machine Learning uarrow-up-right

图宾根大学机器学习

MLSS Iceland 2014 uarrow-up-right Machine Learning Summer School

Quora

Advances in AI(quoraarrow-up-right, )

Training Data for Machine Learning(quoraarrow-up-right, )

ABC of DataScience and ML(quoraarrow-up-right, )

Machine Learning: ML AI(quoraarrow-up-right, )

Python & Machine Learning(quoraarrow-up-right, )

HW accelerators eating AI(quoraarrow-up-right, )

Machine Learning(quoraarrow-up-right, )

Machine Learning 93(quoraarrow-up-right, )

Data science must needed(quoraarrow-up-right, )

Psychology of Machines(quoraarrow-up-right, )

Future TEC.(quoraarrow-up-right, )

Global AI Platform(quoraarrow-up-right, )

AMLD

AMLD指的是Applied Machine Learning Days(应用机器学习日),是一个面向机器学习和人工智能领域的国际会议,也是一个非营利性组织。该组织致力于促进机器学习和人工智能技术的应用和发展,并为学术界、工业界和政府机构提供交流和合作的平台。AMLD成立于2016年,总部位于瑞士日内瓦。该组织定期举办国际会议、研讨会和培训课程,吸引了来自全球各地的学者、研究人员、工程师、企业家和政府官员参加。

AMLD Africa uarrow-up-right Applied Machine Learning Days uarrow-up-right

chevron-right北风网Python人工智能 砖家王二狗arrow-up-righthashtag

北风网Python人工智能-1-数学基础arrow-up-right

北风网Python人工智能-2-Python基础arrow-up-right

北风网Python人工智能-3-Python高级应用arrow-up-right

北风网Python人工智能-4-机器学习arrow-up-right

北风网Python人工智能-5-数据挖掘与项目实战arrow-up-right

北风网Python人工智能-6-深度学习arrow-up-right

北风网Python人工智能-7-自然语言处理arrow-up-right

北风网Python人工智能-8-图像处理arrow-up-right

北风网的大数据时代的Python金融应用实战arrow-up-right

chevron-right麦子人工智能视频教程 砖家王二狗arrow-up-righthashtag

麦子人工智能视频教程(第一阶段arrow-up-right:Python数据分析与建模库)

麦子人工智能视频教程(第二阶段arrow-up-right:机器学习经典算法)

麦子人工智能视频教程(第三阶段arrow-up-right:机器学习案例实战)

DL

Carnegie Mellon University Deep Learning uarrow-up-right

Deep Learning(quoraarrow-up-right, )

Supervisely uarrow-up-right

Data Science

Ping Data Science(quoraarrow-up-right, )

Data Engineering Minds(quoraarrow-up-right, )

Data Sciences - Analytics(quoraarrow-up-right, )

Data Analytics or EnGines(quoraarrow-up-right, )

Data Science in Marketing(quoraarrow-up-right, )

UP主

ML up

莫烦Python(u2barrow-up-right, )

将门-TechBeat技术社区(u2barrow-up-right, )

DeepMind(u2barrow-up-right, )

Dan Van Boxel(u2barrow-up-right, )

Pi School(u2barrow-up-right, )

Siraj Raval(u2barrow-up-right, )

Marc McLean(u2barrow-up-right, )

Geoff Gordon(u2barrow-up-right, )

Arxiv Insights(u2barrow-up-right, )

AI壹号堂(Barrow-up-right, )

yingshaoxo's lab(u2barrow-up-right, )

SuperGqq(sarrow-up-right, )

红色石头(sarrow-up-right, ZHarrow-up-right, 微信公众号/微博:AI有道)

Pascal Poupart(uarrow-up-right, )

艾哈迈德·巴齐(Ahmad Bazzi)(uarrow-up-right, )

Two Minute Papers(uarrow-up-right, )

Kai博士(uarrow-up-right, )

Daniel Bourke(uarrow-up-right, )

Manisha Sirsat(quoraarrow-up-right, )

刘先生(uarrow-up-right, )

Nicholas Renotte(uarrow-up-right, )

DigitalSreeni uarrow-up-right

Applied AI Course(u2barrow-up-right, )

CodeEmporium uarrow-up-right

帅帅家的人工智障(Barrow-up-right, )

李宏毅Hung-yi Lee(sarrow-up-right, uarrow-up-right, )

深度碎片(Barrow-up-right, )

DeepPavlov uarrow-up-right

啥都会一点的研究生(Barrow-up-right, )

Math4AI(Barrow-up-right, )

Acsic People(uarrow-up-right, )

Pantech eLearning(uarrow-up-right, )

爱可可-爱生活/Guang Chen/fly51fly/Barrow-up-right uarrow-up-right gitarrow-up-right

AI Prism(uarrow-up-right, )

StatQuest with Josh Starmer(uarrow-up-right, )

The Coding Train uarrow-up-right

魏博士人工智能 抖音号: Dr.WeiAIarrow-up-right

李文哲 抖音号: vince88888arrow-up-right

AI有啥用 抖音号: 2016078732arrow-up-right

AI技术资讯 抖音号: JiuhuiLi2020arrow-up-right

好玩的AI 抖音号: haowandeaiarrow-up-right

算法工坊 抖音号: ALGHUBarrow-up-right

阿里达摩院扫地僧 抖音号: 54saodisengarrow-up-right

小乔斯在洛杉矶 抖音号: Joyceni0610arrow-up-right

硅谷吴军 抖音号: wujun001arrow-up-right

The AI Epiphany uarrow-up-right

技术喵 arrow-up-right

珂学原理 uarrow-up-right

高怡宣老師 arrow-up-right

白手起家的百万富翁 uarrow-up-right

人工智能之趋势 uarrow-up-right

Luis Serrano uarrow-up-right

徐亦达 uarrow-up-right

Art of the Problem uarrow-up-right

Artificial Intelligence - All in One uarrow-up-right

卍卍子非鱼卍卍 Barrow-up-right

人工智慧與數位教育中心 NCCU AIEC uarrow-up-right

解密遊俠 uarrow-up-right

贪心学院 Greedy AI uarrow-up-right

Learning AI uarrow-up-right

財團法人人工智慧科技基金會 uarrow-up-right

千锋教育 uarrow-up-right

做大饼馅儿的韭菜 zharrow-up-right

机器学习-白板推导系列 shuhuai008 uarrow-up-right Barrow-up-right

容噗玩Data uarrow-up-right

Justin Solomon uarrow-up-right

WsCube Tech! ENGLISH uarrow-up-right

Machine Learning with Phil uarrow-up-right

就是不吃草的羊 Barrow-up-right

Artificial Intelligence and Blockchain uarrow-up-right

Colin Galen uarrow-up-right

Si磕AI论文的女算法 抖音号:49634887878arrow-up-right

When Maths Meet Coding uarrow-up-right

Artificial Intelligence Society uarrow-up-right

Dr. Data Science uarrow-up-right

Pista Academy uarrow-up-right 波斯语

Parallel Computing and Scientific Machine Learning uarrow-up-right

Machine Learning Street Talk uarrow-up-right

Dr Alan D. Thompson uarrow-up-right

Jeremy Howard uarrow-up-right

Artem Kirsanov uarrow-up-right

James Briggs uarrow-up-right

Priya Bhatia uarrow-up-right

大白话AI uarrow-up-right

Find Interesting AI uarrow-up-right

Open Data Science uarrow-up-right

炮老师AICG小课堂 uarrow-up-right

arXiv

arXiv是由康奈尔大学运营的一个非营利性科学论坛,通常科学家在论文正式发表前会预先发到arXiv上防止自己的理论被剽窃.

DL up

fast.ai

Jeremy Howard — The Story of fast.ai and Why Python Is Not the Future of ML Weights & Biasesarrow-up-right

Jeremy Howard: fast.ai Deep Learning Courses and Research | Lex Fridmanarrow-up-right Podcast #35

Data Science up

Data Science Courses(u2barrow-up-right, )

APMonitor.com uarrow-up-right

小旭学长 uarrow-up-right

Pepcoding uarrow-up-right

Amulya's Academy uarrow-up-right

Yoav Freund uarrow-up-right

ai工具

火線班迪 uarrow-up-right 阿石OMP uarrow-up-right 肥拉超漫flcman uarrow-up-right

框架

chevron-rightLong Liangquhashtag

深度学习与PyTorch教程 Long Liangquarrow-up-right 网易云课堂arrow-up-right

深度学习与TensorFlow 2入门实战 Long Liangquarrow-up-right 网易云课堂arrow-up-right 味道arrow-up-right

深度学习与TensorFlow 2 Long Liangquarrow-up-right

magnet:?xt=urn:btih:F60CCA8F091866C1F6F35460882285386719588B&dn=%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%8EPyTorch%E5%85%A5%E9%97%A8%E5%AE%9E%E6%88%98%E6%95%99%E7%A8%8B

2022 Version of Applications of Deep Neural Networks for TensorFlow and Keras (Washington University in St. Louis) Jeff Heatonarrow-up-right

I built the same model with TensorFlow and PyTorch | Which Framework is better? Python Engineerarrow-up-right

AI框架基础 ZOMIarrow-up-right

Tensorflow

jikexueyuanwiki/tensorflow-zharrow-up-right TensorFlow官方文档中文版 s 过时

TensorFlow 2.x Insights EscVMarrow-up-right

TensorFlow2.0 入门到进阶 刘先生arrow-up-right

【北京大学】人工智能 Tensorflow2.0 刘先生arrow-up-right bdyarrow-up-right mocm

人工智能 Tensorflow 视频教程全集| 5 小时从入门到精通 刘先生arrow-up-right

TensorFlow快速入门与实战 极客时间arrow-up-right

TensorFlow 2项目进阶实战 极客时间arrow-up-right

Tensorflow Object Detection in 5 Hours with Python

TensorFlow 2.0 Complete Course - Python Neural Networks for Beginners Tutorial freeCodeCamparrow-up-right 6:52:07 Tech With Tim

TensorFlow 2.0 Crash Course freeCodeCamparrow-up-right

机器学习从零到一 arrow-up-right arrow-up-right arrow-up-right arrow-up-right TensorFlow

TensorFlow Lite 视频系列教程 TensorFlowarrow-up-right

深度学习应用开发-TensorFlow实践 刘先生arrow-up-right

TensorFlow Lite 视频系列教程 TensorFlowarrow-up-right

TensorFlow 2 Beginner Course Python Engineerarrow-up-right

Deep Learning for JavaScript Hackers | Use TensorFlow.js in the Browser Venelin Valkovarrow-up-right

Made with TensorFlow.js TensorFlowarrow-up-right

TensorFlow And Keras Tutorial | Deep Learning With TensorFlow & Keras | Deep Learning | Simplilearnarrow-up-right

联想拯救者R9000P安装Ubuntu 21.04系统及运行TensorFlow1.X代码 csdnarrow-up-right

Google's Machine Learning Virtual Community Day TensorFlowarrow-up-right

TensorFlow Lite for Edge Devices - Tutorial freeCodeCamparrow-up-right

Android Apps TheCodingBugarrow-up-right YOLOv4 TFLite Object Detection Android App Tutorial Using YOLOv4 Tiny, YOLOv4, and YOLOv4 Custom

[Tutorialsplanet.NET] Udemy - TensorFlow 2.0 Practical Advanced

深度学习框架Tensorflow2实战 DayDayUParrow-up-right 唐宇迪

Learn TensorFlow and Deep Learning (beginner friendly code-first introduction) Daniel Bourkearrow-up-right

Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 1/2 Daniel Bourkearrow-up-right 10:15:27

Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 2/2 Daniel Bourkearrow-up-right 3:57:54

Aladdin Persson uarrow-up-right

Deep Learning for Computer Vision with TensorFlow – Complete Course freeCodeCamparrow-up-right 1:13:16:40 colab

PyTorch

pytorch/tutorialsarrow-up-right sarrow-up-right the official PyTorch tutorials

PyTorch for Deep Learning & Machine Learning – Full Course freeCodeCamparrow-up-right 1:01:37:25

Getting Started With PyTorch (C++) Alan Tessierarrow-up-right

Image Classification using CNN from Scratch in Pytorch AI-SPECIALSarrow-up-right

Neural Network Programming - Deep Learning with PyTorch deeplizardarrow-up-right

PyTorch - Python Deep Learning Neural Network API

PyTorchZeroToAll (in English) Sung Kimarrow-up-right

PyTorch for Deep Learning - Full Course / Tutorial freeCodeCamparrow-up-right 9:41:39

Deep Learning and Neural Networks with Python and Pytorch sentdexarrow-up-right

TorchScript and PyTorch JIT | Deep Dive PyTorcharrow-up-right

PyTorch and Monai for AI Healthcare Imaging - Python Machine Learning Course freeCodeCamparrow-up-right

PyTorch Tutorials - Complete Beginner Course Python Engineerarrow-up-right

Introduction to PyTorch Tensors Coding Epocsarrow-up-right

PyTorch - Deep Learning Course | Full Course | Session -1 | Python Tangoo Expressarrow-up-right

Getting Started With PyTorch (C++) Alan Tessierarrow-up-right

PyTorch on Apple Silicon | Machine Learning Alex Ziskindarrow-up-right

Invited Talk: PyTorch Distributed (DDP, RPC)arrow-up-right - By Facebook Research Scientist Shen Li

7 PyTorch Tips You Should Know Edan Meyerarrow-up-right

Learn PyTorch for deep learning in a day. Literally. Daniel Bourkearrow-up-right 1:01:36:57

PyTorch Transfer Learning with a ResNet - Tutorial langfabarrow-up-right

How to Install PyTorch GPU for Mac M1/M2 with Conda Jeff Heatonarrow-up-right

Saving and Loading a PyTorch Neural Network (3.3) Jeff Heatonarrow-up-right

I Built an A.I. Voice Assistant using PyTorch - part 1, Wake Word Detection The A.I. Hacker - Michael Phiarrow-up-right

bentrevett/pytorch-seq2seqarrow-up-right PyTorch Seq2Seq

PyTorch 深度學習快速入門教程(絕對通俗易懂)| 土堆教程 我是土堆arrow-up-right

Python机器学习算法与实战 Adam Sunarrow-up-right zharrow-up-right

Python在机器学习中的应用 Adam Sunarrow-up-right Daitu/Python-machine-learningarrow-up-right

PyTorch深度学习入门和实战 Adam Sunarrow-up-right

Machine Learning Course With Python Siddhardhanarrow-up-right

Deep Learning With PyTorch - Full Course Python Engineerarrow-up-right

PyTorch Beginner Series PyTorcharrow-up-right

PyTorch Tutorials (2022) Mr. P Solverarrow-up-right

Pytorch+cpp/cuda extension 教學 tutorial AI葵arrow-up-right

Aladdin Persson uarrow-up-right

Install PyTorch for Windows GPU Jeff Heatonarrow-up-right

Deep Learning with PyTorch: Zero to GANs freeCodeCamp

PyTorch Basics and Gradient Descent | Part 1 of 6arrow-up-right

PyTorch Images and Logistic Regress | 2 of 6arrow-up-right

Training Deep Neural Networks on GPUs | Part 3 of 6arrow-up-right

Image Classification with Convolutional Neural Networks | Part 4 of 6arrow-up-right bkarrow-up-right

Data Augmentation, Regularization, and ResNets | 5 of 6arrow-up-right

Image Generation using GANs | Part 6 of 6arrow-up-right

PyTorch: Zero to GANs Dhanabhon Subha-asavabhokhinarrow-up-right

Deep Learning with PyTorch: Zero to GANs Jovianarrow-up-right

Keras

Keras - Python Deep Learning Neural Network API deeplizardarrow-up-right

Keras with TensorFlow Course - Python Deep Learning and Neural Networks for Beginners Tutorial freeCodeCamparrow-up-right

Deep learning using keras in python DigitalSreeniarrow-up-right

Deep Learning with Keras Krish Naikarrow-up-right

JAX

Intro to JAX: Accelerating Machine Learning research TensorFlowarrow-up-right

JAX Crash Course - Accelerating Machine Learning code! AssemblyAIarrow-up-right

JAX Diffusers Community Sprint Talks: Day 1 HuggingFacearrow-up-right

JAX Diffusers Community Sprint Talks: Day 2 HuggingFacearrow-up-right

JAX Diffusers Community Sprint Talks: Day 3 HuggingFacearrow-up-right

课程

Artificial Intelligence (AI) vs Machine Learning vs Deep Learning vs Data Science codebasicsarrow-up-right

机器学习算法地图 SIGAIarrow-up-right

ML

Python AI Projects NeuralNinearrow-up-right

No Black Box Machine Learning Course – Learn Without Libraries

freeCodeCamparrow-up-right Radu Mariescu-Istodor

AI 硬體選擇及模型的優化及部署 人工智慧arrow-up-right

AI 深度學習軟硬體及框架選擇經驗分享 人工智慧arrow-up-right

AppForAI 人工智慧開發工具 Windows 及 Linux 版操作介紹 (淡江大學資管系) 人工智慧arrow-up-right

AppForAI-Windows 人工智慧開發工具 sarrow-up-right

Machine Learning Explainability Workshop I Stanford Stanford Onlinearrow-up-right

Machine Learning for Everybody – Full Course freeCodeCamparrow-up-right

【机器学习 | 理论与实战】 编程 / Python(文刀arrow-up-right出品)Barrow-up-right gitarrow-up-right

Complete Machine Learning and Data Science Courses Nicholas Renottearrow-up-right

MIT 16.412J Cognitive Robotics, Spring 2016 MIT OpenCourseWarearrow-up-right

ARTIFICIAL INTELLIGENCE Crack Conceptsarrow-up-right

人工智能:模型与算法 刘先生arrow-up-right drivearrow-up-right 这个好

人工智能:模型与算法 - 浙江大学 刘先生arrow-up-right

人工智能:模型与算法 中国大学MOOC-慕课arrow-up-right

Clustering and Segmentation Algorithms explained Unfold Data Sciencearrow-up-right

Machine Learning Tutorial Python | Machine Learning For Beginners codebasicsarrow-up-right

Machine Learning Algorithm Binod Suman Academyarrow-up-right

Neptune Integrations NeptuneAIarrow-up-right

【機器學習 2023】(生成式 AI) Hung-yi Leearrow-up-right Autoregressive

【機器學習2021】(中文版) Hung-yi Leearrow-up-right

Next Step of Machine Learning (Hung-yi Lee, NTU, 2019) Hung-yi Leearrow-up-right

Advanced Topics in Deep Learning (Hung-yi Lee, NTU) Hung-yi Leearrow-up-right 2018

Machine Learning (Hung-yi Lee, NTU) Hung-yi Leearrow-up-right 2017

Machine Learning From Scratch In Python - Full Course With 12 Algorithms (5 HOURS) Python Engineerarrow-up-right

Machine Learning from Scratch - Python Tutorials Python Engineerarrow-up-right Patrick Loeber

Cognitive and AI IBM Technologyarrow-up-right

MIT 6.034 Artificial Intelligence, Fall 2010 MIT OpenCourseWarearrow-up-right

MIT公开课6.034 人工智能1 (带字幕) 唐逸豪

Machine Learning || Part 1 Geek's Lessonarrow-up-right

邹博 机器学习 曹峰arrow-up-right BiteOfPython Xuhui Linarrow-up-right 升级版第七期arrow-up-right bt:机器学习理论研究

机器学习课程(全)arrow-up-rightMin Yuan 2015arrow-up-right

小象学院-机器学习班升级版III 砖家王二狗arrow-up-right

Deep learning and machine learning HammerResourcesarrow-up-right

Kaggle实战课程 小象 BiteOfPythonarrow-up-right

End-To-End Data Science with Kaggle | Competition speed run? Nicholas Renottearrow-up-right

Top Kaggle Solution for Fall 2022 Semester Jeff Heatonarrow-up-right

七月在线 邹博机器学期算法基础2015年 Min Yuanarrow-up-right

大数据的统计基础(完) 掘金 BiteOfPythonarrow-up-right

课程-人工智能原理 People With_Guitararrow-up-right

北京大学__人工智能原理 知识资源世界(KnowledgeWorld)arrow-up-right

CS188 Artificial Intelligencearrow-up-right (Spring 2013) Prof. Pieter Abbeel

人工智能导论 浙江工业大学 电子工程世界arrow-up-right 共80课时 12小时15分33秒

机器学习-浙江大学2021 刘先生arrow-up-right

机器学习-浙江大学(研究生课程) 刘先生arrow-up-right 2017 可以搭配李航《统计学习方法》

Tensorflow for Deep Learning Research(Labhesh Patelarrow-up-right, )

CS480/680 Intro to Machine Learning - Spring 2019 - University of Waterloo Pascal Poupartarrow-up-right

Understanding Machine Learning - Shai Ben David | UWaterloo Rahul Madhavanarrow-up-right

CS229: Machine Learning | Summer 2019 (Anand Avati) stanfordonlinearrow-up-right

Stanford CS229: Machine Learning

Stanford CS229 Machine Learning 2008 吴恩达(Andrew Ng)Stanfordarrow-up-right homemediaplayer2arrow-up-right

机器学习(Machine Learning)吴恩达(Andrew Ng)la fearrow-up-right

吴恩达《2022新版机器学习》课程 NLP从入门到放弃arrow-up-right sarrow-up-right

【斯坦福大学】深度学习(全192讲)吴恩达 iMuseumsarrow-up-right 27:19:55

Andrew Ng’s Machine Learning Specialization 2022 | What is it and is it worth taking? Thu Vu data analyticsarrow-up-right

EE104: Introduction to Machine Learning stanfordonlinearrow-up-right

机器学习-45-ML-01-Meta Learning(元学习) csdnarrow-up-right

Stanford CS221: Artificial Intelligence: Principles and Techniques | Autumn 2019 stanfordonlinearrow-up-right

Machine Learning for Computational Fluid Dynamics Steve Bruntonarrow-up-right

CS230: Deep Learning | Autumn 2018 stanfordonlinearrow-up-right

CS545 - Information and Data Analytics Seminar Series(listarrow-up-right, )

Data Analytics Crash Course: Teach Yourself in 30 Days freeCodeCamparrow-up-right

机器能像人一样思考吗?人工智能(一)机器学习和神经网络(李永乐老师arrow-up-right)

人脸识别啥原理?人工智能(二)卷积神经网络(李永乐老师arrow-up-right)

Machine Learning & Deep Learning Fundamentals deeplizardarrow-up-right

Machine Learning Theoryarrow-up-right Understanding Machine Learning - Shai Ben-David

CS547 - 人机交互研讨会系列 斯坦福在线arrow-up-right

AI, ML & Data Science - Training | Projects - Pantech E Learning Pantech eLearningarrow-up-right

Artificial Intelligence: Knowledge Representation and Reasoning Artificial Intelligencearrow-up-right Z Sarrow-up-right

July 2019 - Practical Machine Learning with Tensorflow IIT Bombay July 2018arrow-up-right

An Introduction to AI - Mausam | IITD - NPTEL Rahul Madhavanarrow-up-right

Statistical Learning - Rob and Trevor Hastie | Stanford Rahul Madhavanarrow-up-right

Spring 2015: Statistical Machine Learning (10-702/36-702) Ryan Tarrow-up-right

Spring 2017: Statistical Machine Learning (10-702/36-702) Ryan Tarrow-up-right

ML - Yaser Abu-Mostafa | Caltech Rahul Madhavanarrow-up-right

Machine Learning Course - CS 156 caltecharrow-up-right

AI - Patrick Winston | MIT Rahul Madhavanarrow-up-right

Computation and the Brain - Christos H. Papadimitriou December 26 - 28 2019 CSAChannel IIScarrow-up-right

有趣的机器学习 莫烦Pythonarrow-up-right

机器学习基础配套项目实战课程 覃秉丰arrow-up-right gitarrow-up-right

机器学习系列课程 Lida Yanarrow-up-right

机器学习(Machine Learning)吴恩达(Andrew Ng)la fearrow-up-right

Lecture Collection | Machine Learning 吴恩达(Andrew Ng)Stanfordarrow-up-right gitarrow-up-right

机器学习基础:案例研究(华盛顿大学)电子工程世界arrow-up-right 共116课时 8小时3分27秒

[2020] 统计机器学习 [Statistical Machine Learning]【生肉】图宾根机器学习 Barrow-up-right

33:05:54Statistical Machine Learning — Ulrike von Luxburg, 2020 Tübingen Machine Learningarrow-up-right

统计机器学习 电子工程世界arrow-up-right 共41课时 1天47分24秒

统计机器学习(张志华) 刘先生arrow-up-right

机器学习导论(张志华) 刘先生arrow-up-right 电子工程世界arrow-up-right 共42课时 1天4小时6分25秒

应用数学基础(张志华)-北京大学 刘先生arrow-up-right

人工智能 江西理工 罗会兰 电子工程世界arrow-up-right 共40课时 8小时47分20秒

Python机器学习应用 电子工程世界arrow-up-right 共27课时 3小时17分52秒

Apprentissage automatique - Université de Sherbrooke Hugo Larochellearrow-up-right

Intelligence Artificielle - Université de Sherbrooke Hugo Larochellearrow-up-right

DeepHack.Turing (2017) DeepPavlovarrow-up-right

Theoretical Deep Learning Course DeepPavlovarrow-up-right

麦子学院 深度学习基础介绍 机器学习 开发者学堂arrow-up-right 课件arrow-up-right

麦子学院 深度学习进阶:算法与应用 开发者学堂arrow-up-right Yang Liuarrow-up-right

python数据分析与机器学习实战 Yang Liuarrow-up-right

机器学习40讲 极客时间arrow-up-right

Machine Learning with Python || Machine Learning for Beginners Geek's Lessonarrow-up-right

Machine Learning Course for Beginners freeCodeCamparrow-up-right

数之道系列 FunInCodearrow-up-right

【臺大探索第26期】Future of AI:人工智慧大未來 臺大科學教育發展中心CASEarrow-up-right

人人可做的机器学习 跨象乘云arrow-up-right

人工智能专业课程实验演示 跨象乘云arrow-up-right

机器学习 生信宝典 wxarrow-up-right

AI And Machine Learning Full Course | AI Tutorial | Machine Learning Tutorial 2022 | Simplilearnarrow-up-right 11:29:16

AI And Machine Learning Full Course 2022 | AI Tutorial | Machine Learning Tutorial | Simplilearnarrow-up-right 9:59:10

Machine Intelligence Kimia Labarrow-up-right

Machine Learning for beginners Learning AIarrow-up-right

Artificial Intelligence Lessons Dr. Daniel Soperarrow-up-right

How I'm Learning AI and Machine Learning macheads101arrow-up-right

Machine Learning macheads101arrow-up-right

Machine Learning Course - CS 156 caltecharrow-up-right

Miscellaneous but useful information about deep learning DigitalSreeniarrow-up-right

Complete Machine Learning playlist Krish Naikarrow-up-right

[Tutorialsplanet.NET] Udemy -Artificial Intelligence with Python

Harvard CS50’s Artificial Intelligence with Python – Full University Course freeCodeCamparrow-up-right

[Tutorialsplanet.NET] Udemy - Machine Learning, Deep Learning and Bayesian Learning

机器学习实战---电信客户流失问题 DayDayUParrow-up-right

人工智能核心能力培养 DayDayUParrow-up-right

Machine Learning Luci Datearrow-up-right

Stanford AA289 - Robotics and Autonomous Systems Seminar Stanford Onlinearrow-up-right

Learn Core Machine Learning for FREE | Ultimate Course for Beginners Ayush Singharrow-up-right

B站首推!字节大佬花一周讲完的人工智能,2023公认最通俗易懂的【AI人工智能教程】小白也能信手拈来(人工智能|机器学习|深度学习|CV)等等随便白嫖!AI宝库arrow-up-right

【全1024集】清华大佬关门弟子课程!这波不亏,全程高能,学完即可上岸,拿走不谢!Python大本营arrow-up-right

这绝对是B站最全的了!AI人工智能、机器学习、深度学习、OpenCV、神经网络(附项目实战搭配学习)一口气全都学完!Python校长arrow-up-right 61:06:06

【整整600集】北大教授196小时讲完的AI人工智能从入门到项目实战全套教程,全程干货无废话!学完变大佬!这还学不会我退出IT圈!机器学习/深度学习/神经网络 马士兵-人工智能学院arrow-up-right

54:47:36

人工智能基础-国防科技大学 刘先生arrow-up-right

中国人工智能学会 sarrow-up-right CAAI warrow-up-right

系列交叉论坛 IT大咖说arrow-up-right

系列交叉论坛 第37期 徐宗本 AI的10个重大数理基础问题 pdfarrow-up-right zharrow-up-right

演讲实录丨徐宗本院士:如何突破机器学习的先验假设?csdnarrow-up-right

AI与数学:融通共进的时代—徐宗本 csdnarrow-up-right

Setting Up CUDA, CUDNN, Keras, and TensorFlow on Windows 11 for GPU Deep Learning Jeff Heatonarrow-up-right

唐宇迪

【唐宇迪】机器学习600集!机器学习算法精讲及其案例应用,直接看时长!最全最完整的机器学习教程从零基础开始学习!-人工智能/深度学习/机器学习 迪哥谈AIarrow-up-right 30:25:37

这也太全了!回归算法、聚类算法、决策树、随机森林、神经网络、贝叶斯算法、支持向量机等十大机器学习算法一口气学完!迪哥AI课堂arrow-up-right 29:50:56

林轩田 Hsuan-Tien Lin(uarrow-up-right, )

Machine Learning Foundations (機器學習基石) 机器学习基石 Hsuan-Tien Linarrow-up-right 电子工程世界arrow-up-right

Machine Learning Techniques (機器學習技法) 机器学习技法 Hsuan-Tien Linarrow-up-right 电子工程世界arrow-up-right

概率机器学习 Probabilistic Machine Learning

Probabilistic Machine Learning — Philipp Hennig, 2021 Tübingen Machine Learningarrow-up-right

[2020] 概率机器学习 [Probabilistic Machine Learning]【生肉】图宾根大学机器学习 Barrow-up-right

图机器学习 Machine Learning with Graphs

【图机器学习Machine Learning with Graphs】精译【Stanford 公开课 CS224W (Fall 2021)】(中英双语字幕) Barrow-up-right 22:25:02

Stanford CS224W: Machine Learning with Graphs Stanford Onlinearrow-up-right


DL

2024 Fall 台大資訊 深度學習之應用 NTU CSIE ADL 陳縕儂 Vivian NTU MiuLabarrow-up-right

2023 Spring 台大資訊 人工智慧導論 NTU CSIE FAI 陳縕儂 Vivian NTU MiuLabarrow-up-right

2022 Fall 台大資工 深度學習之應用 NTU CSIE ADL Vivian NTU MiuLabarrow-up-right

2022 Fall 台大資訊 深度學習之應用 NTU CSIE ADL

2022 Spring 台大資工 深度學習之應用 NTU CSIE ADL Vivian NTU MiuLabarrow-up-right

2021 Spring 台大資工 深度學習之應用 NTU CSIE ADL Vivian NTU MiuLabarrow-up-right

2020 Spring 台大資工 深度學習之應用 NTU CSIE ADL Vivian NTU MiuLabarrow-up-right

MIT 6.S192: Deep Learning for Art, Aesthetics, and Creativity Ali Jahanianarrow-up-right

MIT 6.S192:艺术、美学和创造力的深度学习

Deep Learning & Machine Learning KNOWLEDGE DOCTORarrow-up-right

NVIDIA Deep Learning Course NVIDIAarrow-up-right

Deep learning conference Surearrow-up-right

2022 人人有功練:資料科學深度學習 茶米老師教室arrow-up-right

Learn TensorFlow and Deep Learning (beginner friendly code-first introduction) Daniel Bourkearrow-up-right

Neural Networks from Scratch in Python(sentdexarrow-up-right

PyTorch for Deep Learning - Full Course / Tutorial freeCodeCamp.orgarrow-up-right 9:41:39

Bay Area Deep Learning School Shubhabrata Senguptaarrow-up-right

深度学习能工作的秘密 (Why Deep Learning Worksarrow-up-right):深度神经网络中的隐式自正则化

深度学习理论(斯坦福)爱可可-爱生活arrow-up-right

Deep Learning Theories Changkun Ouarrow-up-right

Deep Learning Tutorials Changkun Ouarrow-up-right

Deep Learning Applications Changkun Ouarrow-up-right

Deep Learning for Computer Architects CoffeeBeforeArcharrow-up-right

DeepLearning - Mitesh Khapra, SKS Iyengar || IIT Ropar and Madras - NPTEL Rahul Madhavanarrow-up-right

Deep Learning - Andrew Ng Kian Katanforoosh | Stanford - OnlineHub Rahul Madhavanarrow-up-right

Deep Learning - Ali Ghodsi | STAT 946 - U.Waterloo Rahul Madhavanarrow-up-right

Deep Learning Course by Sargur N. Srihari CSAChannel IIScarrow-up-right

Deep Learning by Sargur N. Srihari CSAChannel IIScarrow-up-right

Deep Learning Course NVIDIA Developerarrow-up-right

Neural networks class - Université de Sherbrooke Hugo Larochellearrow-up-right

[Coursera] Neural Networks for Machine Learning — Geoffrey Hinton Colin Reckonsarrow-up-right

Deep Learning Crash Course for Beginners freeCodeCamparrow-up-right

Practical Deep Learning for Coders - Full Course from fast.ai and Jeremy Howard freeCodeCamparrow-up-right

Neural Networks from Scratch with Python and Opencv Pysourcearrow-up-right

CS294-158 Deep Unsupervised Learning Dhanabhon Subha-asavabhokhinarrow-up-right

How Deep Neural Networks Work - Full Course for Beginners freeCodeCamparrow-up-right

人工智能与机器学习 做大饼馅儿的韭菜arrow-up-right

Intuitive Deep Learning 深度碎片arrow-up-right

Deep Learning: CS 182 Spring 2021 RAILarrow-up-right

NIPS 2016 Deep Learning for Action and Interaction Workshop RAILarrow-up-right

Ilya Sutskever: Deep Learning | Lex Fridman Podcast #94 Lex Fridmanarrow-up-right

GPT-4 Creator Ilya Sutskever Eye on AIarrow-up-right

Ilya Sutskever (OpenAI Chief Scientist) - Building AGI, Alignment, Spies, Microsoft, & Enlightenment Dwarkesh Patelarrow-up-right

Sam Altman回归!聊聊“叛变者”的恐惧与信念:OpenAI技术灵魂人物Ilya Sutskever 硅谷101arrow-up-right

The Robot Brains Podcast uarrow-up-right Ilya Sutskever

伊利亚·苏茨克沃 苏神 OpenAI的联合创始人和首席科学家

谷歌大脑 人工智能科学家 AlphaGo论文作者之一

OpenAI到底是一家怎样的公司? 量子位arrow-up-right

Inside OpenAI [Entire Talk] Stanford eCornerarrow-up-right

OpenAI成长史:顶级资本与科技大佬的理想主义,冲突,抉择与权力斗争;马斯克、奥特曼、纳德拉与比尔·盖茨等人的背后故事【深度】 硅谷101arrow-up-right

Greg Brockman OpenAI CEO CTO

Deep Learning Basics: Introduction and Overview Lex Fridmanarrow-up-right

MIT 6.S094, Lex Fridman schung168arrow-up-right

LEX Fridman MIT Lectures ARarrow-up-right

Complete Deep Learning Krish Naikarrow-up-right

深度學習 Yen-Lung Tsaiarrow-up-right

1102政大【數學軟體應用】(深度學習) 課程 Yen-Lung Tsaiarrow-up-right

Machine Learning & Neural Networks without Libraries – No Black Box Course freeCodeCamparrow-up-right

动手学深度学习

动手学深度学习

v2视频(Barrow-up-right, ), v2视频(Barrow-up-right, ),

深度学习论文精读 gitarrow-up-right

【李沐】动手学深度学习-pytorch 2021版 Math4AIarrow-up-right 数据丢失

跟李沐学AI uarrow-up-right

DeepLearningAI

Deep Learning Specialization

(Course 1arrow-up-right) Neural Networks and Deep Learning

(Course 2arrow-up-right) Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

(Course 3arrow-up-right) Structuring Machine Learning Projects

(Course 4arrow-up-right) Convolutional Neural Networks

(Course 5arrow-up-right) Sequence Models

Data Science

数据科学

Python And Data Science Full Course | Data Science With Python Full Course In 12 Hours | Simplilearnarrow-up-right

Build 12 Data Science Apps with Python and Streamlit - Full Course(freeCodeCamparrow-up-right)

Data Science - Learn to code for beginners deeplizardarrow-up-right

Intro to Data Science Steve Bruntonarrow-up-right

Python for Data Science NPTEL-NOC IITMarrow-up-right

Tools in Scientific Computing IIT Kharagpur July 2018arrow-up-right

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016 MIT OpenCourseWarearrow-up-right

Python for Data Science - Course for Beginners (Learn Python, Pandas, NumPy, Matplotlib)

freeCodeCamparrow-up-right

Data Analysis with Python - Full Course for Beginners (Numpy, Pandas, Matplotlib, Seaborn) freeCodeCamp arrow-up-right4:22:12

Data Analysis Tutorial for Beginners Geek's Lessonarrow-up-right

Data Analysis with Python for Excel Users - Full Course freeCodeCamparrow-up-right

Build 12 Data Science Apps with Python and Streamlit - Full Course freeCodeCamparrow-up-right

Data Analysis with Python Course - Numpy, Pandas, Data Visualization freeCodeCamparrow-up-right

Intro to Data Science - Crash Course for Beginners freeCodeCamparrow-up-right

Solving real world data science tasks with Python Pandas! Keith Galliarrow-up-right

Keynote Jake VanderPlas PyDataarrow-up-right

Reproducible Data Analysis in Jupyter Jake Vanderplasarrow-up-right

Data Mining資料採礦課程 謝邦昌arrow-up-right

Learn Data Science Tutorial - Full Course for Beginners freeCodeCamparrow-up-right

Full Data Science Course Learn Python with Runearrow-up-right

Data Science and Machine Learning with Python and R Krish Naikarrow-up-right

Polars: The Next Big Python Data Science Library... written in RUST? Rob Mullaarrow-up-right

Data Science Job Interview – Full Mock Interview freeCodeCamparrow-up-right

python 数据分析(中国国家精品课程) 华人开放式课程MOOCarrow-up-right

Data Science/ML Projects JCharisTecharrow-up-right

10x Your Data Science With Polars Machine Learning with Philarrow-up-right

数据清理

The Ultimate Guide to Data Cleaning towardsdatasciencearrow-up-right

斯坦福CS329P:实用机器学习 Mu Liarrow-up-right 主页arrow-up-right

算法

奥卡姆剃刀原理(ccam's razor) 严伯钧arrow-up-right varrow-up-right8:33 entities should not be multi-plied beyond necessity

LightGBM(sitearrow-up-right, paperarrow-up-right, githubarrow-up-right, wikiarrow-up-right, pypiarrow-up-right)

Dijkstra's Algorithm(varrow-up-right, )

XGBoost 中文文档(书栈arrow-up-right, )

算法:Xgboost提升算法 开发者学堂arrow-up-right

XGBoost与LightGBM 数据科学家常用工具大PK——性能与结构 Data Application Labarrow-up-right

Time Series Forecasting with XGBoost - Use python and machine learning to predict energy consumption Medallion Data Sciencearrow-up-right

极客学院机器学习训练营

机器学习环境配置手册arrow-up-right githubarrow-up-right 0期课程大纲arrow-up-right

scikit-learn (sklearn)

機器學習:使用Python (书栈arrow-up-right, )

scikit-learn (sklearn) 0.21.3 官方文档中文版 (书栈arrow-up-right, )

Scikit-Learn Python Tutorial | Machine Learning with Scikit-learn ProgrammingKnowledgearrow-up-right

Jake VanderPlas: Machine Learning with Scikit Learn PyDataarrow-up-right

Real-World Python Machine Learning Tutorial w/ Scikit Learn (sklearn basics, NLP, classifiers, etc) Keith Galliarrow-up-right

Professional Preprocessing with Pipelines in Python NeuralNinearrow-up-right

Precision & Recall in Machine Learning Explained NeuralNinearrow-up-right

机器学习Sklearn全套教程(程序员必备)千锋教育arrow-up-right drive

Traditional Machine Learning in Python DigitalSreeniarrow-up-right

Scikit-Learn Tutorial | Machine Learning With Scikit-Learn | Sklearn | Python Tutorial | Simplilearnarrow-up-right

Scikit-Learn Course - Machine Learning in Python Tutorial freeCodeCamparrow-up-right

Scikit-learn Crash Course - Machine Learning Library for Python freeCodeCamparrow-up-right

Learning Scikit-Learn Google Cloud Techarrow-up-right

Introduction to scikit-learn Lander Analyticsarrow-up-right

Introduction to Python in Google Colab and Introduction to Sci Kit Learn Veronica Redarrow-up-right

Python in Data Science for Intermediate learndataaarrow-up-right

Understanding Pipeline in Machine Learning with Scikit-learn (sklearn pipeline) Dr. Data Sciencearrow-up-right

Machine learning in Python with scikit-learn Data Schoolarrow-up-right

Scikit-Learn Model Pipeline Tutorial Greg Hoggarrow-up-right

Using Scikit-Learn Pipelines for Data Preprocessing with Python Nicholas Renottearrow-up-right

预测

08预测 课堂商业arrow-up-right

Stock Price Prediction & Forecasting with LSTM Neural Networks in Python Greg Hoggarrow-up-right colab

Rain Prediction | Building Machine Learning Model for Rain Prediction using Kaggle Dataset SPOTLESS TECHarrow-up-right

Kaggle Titanic Survival Prediction

Titanic Survival Prediction in Python - Machine Learning Project NeuralNinearrow-up-right

Desafio Kaggle: Titanic - Preparando os dados - Parte 1 DevVerso [BR]arrow-up-right

Logistic Regression with Python | Titanic Data | Your First Kaggle Project | Analytics Summitarrow-up-right

Kaggle Titanic Survival Prediction Competition Part 1/2 - Exploratory Data Analysis Jason Chongarrow-up-right

分类

CART - Classification And Regression Trees StatQuest with Josh Starmerarrow-up-right

Decision Tree Classification Clearly Explained! Normalized Nerdarrow-up-right

线性回归 & 线性模型 Linear Regression and Linear Models

Linear Regression and Linear Models StatQuest with Josh Starmerarrow-up-right

【千锋大数据】机器学习之线性回归教程(6集)千锋教育arrow-up-right

多元线性回归, multi variate Linear Regression

18 多元线性回归 南京大学周志华 Daricsarrow-up-right

逻辑回归 Logistic Regression

【千锋大数据】机器学习之逻辑回归教程(6集)千锋教育arrow-up-right

線性機率模型 (LPM) 與邏輯斯迴歸 (Logistic Regression) 張翔老師arrow-up-right

【Stata小课堂】第24讲:有序多分类Logistic回归(Ordinal Logistic Regression) Mingyu Zhangarrow-up-right

Big Data Analysis - Regression 李政軒arrow-up-right

Tutorial 35- Logistic Regression Indepth Intuition- Part 1| Data Science Krish Naikarrow-up-right

08逻辑回归算法 课时46逻辑回归算法原理推导 互联网开发教程arrow-up-right tyd

Logistic Regression - Is it Linear Regression? CodeEmporiumarrow-up-right

决策树

Decision Tree Classification Algorithm in Telugu CSE & IT Tutorials 4uarrow-up-right

剪支 pruning

随机森林 Random Forests

What is Random Forest? IBM Technologyarrow-up-right

算法:随机森林与集成算法 开发者学堂arrow-up-right

一套完整的基于随机森林的机器学习流程(特征选择、交叉验证、模型评估))生信宝典arrow-up-right

Random Forest Algorithm Clearly Explained! Normalized Nerdarrow-up-right

How Do Random Forests Work & What is Ensemble Learning NeuralNinearrow-up-right

MLP

MLP-Mixer: An all-MLP Architecture for Vision (Machine Learning Research Paper Explained) Yannic Kilcherarrow-up-right

MLP-Mixer:一个比ViT更简洁的纯MLP架构 知乎 陀飞轮arrow-up-right

MLP-Mixer: MLP is all you need... again? ... mchromiakarrow-up-right

Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision pythonrepoarrow-up-right

Prediction using Artificial Neural Network (MLP) - Predict Car Price Roy Jafariarrow-up-right

What are MLPs (Multilayer Perceptrons)? IBM Technologyarrow-up-right

Multilayer Perceptrons - Ep.6 (Deep Learning Fundamentals) Power Harrow-up-right

Perceptron Algorithm with Code Example - ML for beginners! Python Simplifiedarrow-up-right

KAN

使用KAN网络,更少参数更高准确率,更好的可解释性 替代传统MLP!Find Interesting AIarrow-up-right

聚类 Clustering 集簇

Theory of Clusteringarrow-up-right Understanding Machine Learning - Shai Ben-David

人工智能案例:聚类实践 开发者学堂arrow-up-right

Numpy: Kmeans Clustering from Scratch GNT Learningarrow-up-right

K-means & Image Segmentation - Computerphilearrow-up-right

K-Means Clustering From Scratch in Python (Mathematical) NeuralNinearrow-up-right

聚类的"好坏"不存在绝对的标准

寻找标准是关键

常见的聚类方法

原型聚类

亦称"基于原型的聚类"(prototype-based clustering)

假设:聚类结构能够通过一组原型刻画

过程:先对原型初始化, 然后对原型进行迭代更新求解

代表:k均值聚类, 学习向量量化(LVQ), 高斯混合聚类

密度聚类

亦称"基于密度的聚类"(density-based clustering)

假设:聚类结构能够通过样本分布的紧密程度确定

过程:从样本密度的角度来考察样本之间的可连续性, 并基于可连接样本不断扩展聚类蔟

代表:DBSCAN, OPTICS, DENCLUDE

层次聚类(hierarchical clustering)

假设:能够产生不同粒度的聚类结果

过程:在不同层次对数据集进行划分, 从而形成树形的聚类结构

代表:AGNES(自低向上), DIANA(自顶向下)

回归 Regression

算法:线性回归算法 开发者学堂arrow-up-right

案例实战 信用卡欺诈检测 开发者学堂arrow-up-right

线性回归 Ouyang Ruofeiarrow-up-right git

How to implement Linear Regression from scratch with Python AssemblyAIarrow-up-right

高斯过程 varrow-up-right

Lasso Regression Udacityarrow-up-right

10b Machine Learning: LASSO Regression GeostatsGuy Lecturesarrow-up-right

Polynomial Regression in Python NeuralNinearrow-up-right

Poisson regression with tidymodels for package vignette counts Julia Silgearrow-up-right

Regression Analysis | Full Course DATAtabarrow-up-right

How to do Multiple Linear Regression in Python| Jupyter Notebook|Sklearn Megha Narangarrow-up-right

Multivariable Linear Regression using Gradient Descent Algorithm in Python,Step by Step from scratch PAUL ACADEMYarrow-up-right

Multiple Linear Regression using python and sklearn Krish Naikarrow-up-right

Statistics PL15 - Multiple Linear Regression Brandon Foltzarrow-up-right

Linear Regression From Scratch in Python (Mathematical) NeuralNinearrow-up-right

简单线性回归简介(simple linear regression )Python统计66——Python程序设计系列169 Andrew 程序设计arrow-up-right

11 1 简单线性回归的统计描述 11 医学统计学-郝元涛(中山大学)arrow-up-right

Bayesian Linear Regression: Simple Linear Regression Review Lazy Programmerarrow-up-right

Bayesian Linear Regression: Distribution of Parameter Estimate Lazy Programmerarrow-up-right

Machine Learning Foundations Course – Regression Analysis freeCodeCamparrow-up-right

Interpreting Linear Regression Results Sergio Garcia, PhDarrow-up-right

线性回归 Daricsarrow-up-right 南京大学周志华

KNN

【千锋大数据】3天快速入门机器学习(9集) 千锋教育arrow-up-right

How kNN algorithm works Thales Sehn Körtingarrow-up-right

How to implement KNN from scratch with Python AssemblyAIarrow-up-right

Heart Disease Predictor Model Using KNN Classifier |Machine Learning| Python | Project For Beginners AI Sciencesarrow-up-right

Implementation of KNN Algorithm using Iris Dataset in Jupyter Notebook | JAcademyarrow-up-right

KNN Algorithm In Machine Learning | KNN Algorithm Using Python | K Nearest Neighbor | Simplilearnarrow-up-right

KNN (K-Nearest Neighbor) Algorithm in Telugu CSE & IT Tutorials 4uarrow-up-right

K - Nearest Neighbors - KNN Fun and Easy Machine Learning Augmented Startupsarrow-up-right

Predicting CS:GO Round Winner with Machine Learning NeuralNinearrow-up-right

K-Nearest Neighbors Classification From Scratch in Python (Mathematical) NeuralNinearrow-up-right

K-Nearest Neighbors Algorithm From Scratch In Python The Teen Innovatorarrow-up-right

时间序列 Time Series

算法:时间序列AIRMA模型 开发者学堂arrow-up-right

案例:时间序列预测任务 开发者学堂arrow-up-right

时间序列分析:用数据做预测(第595期)Data Application Labarrow-up-right

数据科学读书会 Book 15 – 《Hands-on Time Series Analysis with Python》

时间序列分析 第一讲 Data Application Labarrow-up-right

数据科学读书会 Book 15 - 时间序列分析 单变量时间序列varrow-up-right

Structured Learning 4: Sequence Labeling Hung-yi Leearrow-up-right

Time Series Prediction Siraj Ravalarrow-up-right

Time Series Analysis:Data Scientist是如何做时间序列分析的?(第566期)

Data Application Labarrow-up-right

Time Series Analysis (Forecasting, Mining, Transformation, Clustering, Classification) + Python code Hadi Fanaeearrow-up-right gitarrow-up-right

Data Mining資料採礦課程 謝邦昌arrow-up-right

Time Series Analysis ritvikmatharrow-up-right

02417 Time Series Analysis Lasse Engbo Christiansenarrow-up-right 2018

02417 Time Series Analysis, Fall 2017 Lasse Engbo Christiansenarrow-up-right

02417 Time series analysis, Fall 2016 Lasse Engbo Christiansenarrow-up-right

Time Series Forecasting Theory

Multivariate Time Series Forecasting with LSTM using PyTorch and PyTorch Lightning (ML Tutorial) Venelin Valkovarrow-up-right

Multivariate Time Series Forecasting Using LSTM, GRU & 1d CNNs Greg Hoggarrow-up-right

1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jeff Roach PyDataarrow-up-right

Convolutional neural networks with dynamic convolution for time series classification Krisztian Buzaarrow-up-right

Webinar: Time-series Forecasting With Model Types: ARIMAX, FBProphet, LSTM NeptuneAIarrow-up-right

161 - An introduction to time series forecasting - Part 1 DigitalSreeniarrow-up-right

162 - An introduction to time series forecasting - Part 2 Exploring data using python DigitalSreeniarrow-up-right

163 - An introduction to time series forecasting - Part 3 Using ARIMA in python DigitalSreeniarrow-up-right

166 - An introduction to time series forecasting - Part 5 Using LSTM DigitalSreeniarrow-up-right

181 - Multivariate time series forecasting using LSTM DigitalSreeniarrow-up-right

Time Series Analysis (ARIMA) using Python Tathya Bislesanarrow-up-right

Time Series Analysis For Rainfall Prediction Using LSTM Model - Explained For Beginners AI Sciencesarrow-up-right

Time Series Forecasting with XGBoost - Use python and machine learning to predict energy consumption Medallion Data Sciencearrow-up-right

Time Series Analysis with FB Prophet JCharisTecharrow-up-right

支持向量机 SVM

算法:线性支持向量机 开发者学堂arrow-up-right

【千锋大数据】机器学习之SVM教程(9集) 千锋教育arrow-up-right

Understanding SVM ,its Type ,Applications and How to use with Python engineerknowarrow-up-right

Support Vector Machine Algorithm in Telugu CSE & IT Tutorials 4uarrow-up-right

Support Vector Machine - How Support Vector Machine Works | SVM In Machine Learning | Simplilearnarrow-up-right

Support Vector Machine - SVM - Classification Implementation for Beginners (using python) - Detailed Cloud and ML Onlinearrow-up-right

Support Vector Machine (SVM) Basic Intuition- Part 1| Machine Learning Krish Naikarrow-up-right

Kernel Method

神经网络, Neural Networks, NN

Batch Normalization - EXPLAINED! CodeEmporiumarrow-up-right

Optimizers - EXPLAINED! CodeEmporiumarrow-up-right

Liquid Neural Networks MITCBMMarrow-up-right

Neural Networks from Scratch with Python and Opencv Pysourcearrow-up-right

How Deep Neural Networks Work - Full Course for Beginners freeCodeCamparrow-up-right

深度神经网络的工作原理 Brandon Rohrerarrow-up-right

Stanford Seminar - Incorporating Sample Efficient Monitoring into Learned Autonomy Stanford Onlinearrow-up-right

The Mathematics of Neural Networks Art of the Problemarrow-up-right

Illustrated Guide to Deep Learning The A.I. Hacker - Michael Phiarrow-up-right

How are memories stored in neural networks? | The Hopfield Network #SoME2 Layerwise Lecturesarrow-up-right

Hopfield Networks is All You Need (Paper Explained) Yannic Kilcherarrow-up-right

Talk | FAIR研究科学家刘壮:高效和可扩展的视觉神经网络架构 将门-TechBeat技术社区arrow-up-right

深度学习基础介绍 机器学习19 神经网络NN算法 开发者学堂arrow-up-right gitarrow-up-right

Neural Networks are Decision Trees (w/ Alexander Mattick) Yannic Kilcherarrow-up-right

Visualizing and Understanding Deep Neural Networks by Matt Zeiler Data Councilarrow-up-right

GLOM: How to represent part-whole hierarchies in a neural network (Geoff Hinton's Paper Explained) Yannic Kilcherarrow-up-right

[DMQA Open seminar] Backbone Network in Deep learning Sejin Simarrow-up-right

How to Create a Neural Network (and Train it to Identify Doodles) Sebastian Laguearrow-up-right

Neural Network Primer Luci Datearrow-up-right

10 Tips for Improving the Accuracy of your Machine Learning Models Jeff Heatonarrow-up-right

Neural Networks: Zero to Hero Andrej Karpathyarrow-up-right OpenAI 核心成员, 特斯拉自动驾驶

你能不能训练一个GPT类大型语言模型?基地arrow-up-right 安德鲁·卡帕西(Andrej Karpathy)

Neural Network from Scratch | Mathematics & Python Code The Independent Codearrow-up-right

Gradient Descent From Scratch in Python - Visual Explanation NeuralNinearrow-up-right

Deriving the Ultimate Neural Network Architecture from Scratch #SoME3 Algorithmic Simplicityarrow-up-right

万能近似定理(universal approximation theorrm)

神经网络的万能逼近定理已经发展到什么地步了? zharrow-up-right

Why Neural Networks can learn almost anything Emergent Gardenarrow-up-right

RBF Networks

Lecture 16 - Radial Basis Functions caltecharrow-up-right

Mod-01 Lec-27 RBF Neural Network nptelhrdarrow-up-right

Mod-01 Lec-28 RBF Neural Network (Contd.) nptelhrdarrow-up-right

参数追踪 参数可视化

Visualize Neural Networks

4 Ways To Visualize Neural Networks in Python JCharisTecharrow-up-right

Track your machine learning experiments locally, with W&B Local - Chris Van Pelt Weights & Biasesarrow-up-right searcharrow-up-right

自动微分 自动求导

自动微分 ZOMIarrow-up-right

MindSpore初学教程 ZOMIarrow-up-right

计算图

计算图 ZOMIarrow-up-right

AI框架之计算图

"图计算"和"计算图"是不同的概念,尽管它们之间有一些关联。

"计算图"通常指的是一种表示计算过程的图形结构,其中节点表示计算操作,边缘表示数据流。它通常被用于深度学习中,以表示神经网络的计算过程。在计算图中,每个节点执行特定的数学运算,并将结果传递给后续节点。这种图形表示方式有助于优化计算和自动求导。

"图计算"是一种计算模型,它使用图形结构来表示和处理数据。它的基本思想是将数据存储为图形结构,然后使用图形算法来处理数据。图计算可以应用于许多领域,例如社交网络分析、推荐系统和生物信息学。

因此,尽管它们之间有一些相似之处,但"图计算"和"计算图"是不同的概念。"计算图"是一种表示计算过程的图形结构,而"图计算"是一种使用图形结构来表示和处理数据的计算模型。

RNN Recurrent Neural Networks

Recurrent Neural Networks - EXPLAINED! CodeEmporiumarrow-up-right

LSTM

LSTM Networks - EXPLAINED! CodeEmporiumarrow-up-right

蒙特卡洛 Monte Carlo

蒙特卡洛树搜索 Monte Carlo Tree Search (MCTS)

6. Monte Carlo Simulation MIT OpenCourseWarearrow-up-right MIT 6.0002

蒙特卡洛树搜索基础(Monte Carlo Tree Search) 技术喵arrow-up-right

【讀論文】蒙地卡羅 詳細過程 | Monte Carlo Tree Search| 遊戲樹 K66arrow-up-right

Monte Carlo Tree Search 1arrow-up-right 2arrow-up-right Udacity

Monte Carlo Tree Search (MCTS) Tutorial Fullstack Academyarrow-up-right

蒙特卡洛 Monte Carlo Shusen Wangarrow-up-right

Monte Carlo Inference 徐亦达arrow-up-right

数学_蒙地卡罗法和Buffon needle简介 PengTitusarrow-up-right

【数之道 21】随机抽样、蒙特卡洛模拟与逆转换方法 FunInCodearrow-up-right

将简单的均匀分布抽样转化为复杂分布抽样的方法:

逆转换方法 Inverse Transform Sampling

【数之道 22】巧妙使用"接受-拒绝"方法,玩转复杂分布抽样 FunInCodearrow-up-right

接受拒绝抽样 Acceptance Rejection Sampling

Monte Carlo simulation for Conditional VaR (Excel) NEDLarrow-up-right

MATLAB小课堂——如何使用蒙特卡洛模拟进行预测? MATLABarrow-up-right

Advanced 4. Monte Carlo Tree Search MIT OpenCourseWarearrow-up-right

Tongkui Yu uarrow-up-right

AI如何下棋?直观了解蒙特卡洛树搜索MCTS!!! 图灵鸡科技俱乐部arrow-up-right

马尔可夫 马尔科夫 Markov

OR 10-2 馬可夫性質與馬可夫鏈(李維OR) 小卒數理學堂arrow-up-right

徐亦达机器学习课程 Markov Chain Monte Carlo (part 1arrow-up-right) (part 2arrow-up-right)(3arrow-up-right)(4arrow-up-right)徐亦达

Intro to Reinforcement Learning 强化学习纲要 第二课 马尔科夫决策过程 arrow-up-right arrow-up-right Bolei Zhou

15讲01 隐马尔科夫模型的基本概念 MM liarrow-up-right

隐马尔科夫模型 Ouyang Ruofeiarrow-up-right

程序数学之随机过程 Jomy Kingarrow-up-right

A friendly introduction to Bayes Theorem and Hidden Markov Models Serrano.Academyarrow-up-right Luis Serranoarrow-up-right

馬可夫不等式 CUSTCoursesarrow-up-right

Lecture 8: Markov Decision Processes (MDPs) CS188Spring2013arrow-up-right

Finite Math: Introduction to Markov Chains Brandon Foltzarrow-up-right

馬可夫鏈基礎1 Chen Kiwiiarrow-up-right 馬可夫鏈進階1 Chen Kiwiiarrow-up-right

Hidden Markov Model 徐亦达arrow-up-right

程序数学之随机过程 Jomy Kingarrow-up-right csdnarrow-up-right

【数之道 20】5分钟理解'马尔可夫链'的遍历性与唯一稳态 Markov Chain's Ergodicity and Stationary Distribution FunInCodearrow-up-right

Lecture 7: Markov Decision Processes - Value Iteration | Stanford CS221: AI (Autumn 2019) stanfordonlinearrow-up-right

Markov Decision Processes (MDPs) - Structuring a Reinforcement Learning Problem deeplizardarrow-up-right

Stanford教授Daphne Koller 概率图模型 — 终极入门 第arrow-up-right讲 马尔可夫网络 (Markov Networks) pdfarrow-up-right

Markov Chains Clearly Explained! Normalized Nerdarrow-up-right

用Python介绍马尔可夫链! Adrian Dolinayarrow-up-right

[Tutorialsplanet.NET] Udemy - Unsupervised Machine Learning Hidden Markov Models in Python

MCMC, Markov Chain Monte Carlo

基于采样的马尔可夫链蒙特卡罗(Markov Chain Monte Carlo,简称MCMC)方法

[硬核公式推导系列] 蒙特卡洛模拟与MCMC 技术喵arrow-up-right gitarrow-up-right

Box-Muller算法?

接受拒绝抽样 Acceptance Rejection Sampling

metropolis Hastings

Gibbs Sampling

为什么要使用MCMC方法?zharrow-up-right

一文读懂贝叶斯推理问题:MCMC方法和变分推断 zharrow-up-right

17讲02 近似推断法:MCMC和变分推断 MM liarrow-up-right

随机数算法, Sobol列 varrow-up-right 25:07

维特比算法 The Viterbi Algorithm

chevron-right维特比算法 The Viterbi Algorithmhashtag

基于维特比算法的文本分词 (Greedy Academy) 贪心学院 Greedy AIarrow-up-right

任务024:分词 维特比算法 Williamarrow-up-right 砖家王二狗arrow-up-right

Viterbi Algorithm Keith Chuggarrow-up-right

汉语自然语言处理-维特比算法与NER-命名实体识别-viterbi algorithm-HMM-CRF-概率图模型-动态规划 Shurui Zhangarrow-up-right Barrow-up-right

Decoding Convolutional Codes: The Viterbi Algorithm Explained Iain Explains Signals, Systems, and Digital Commsarrow-up-right

The Viterbi Algorithm : Natural Language Processing ritvikmatharrow-up-right

(ML 14.11) Viterbi algorithm (part 1) mathematicalmonkarrow-up-right

人工智慧 -- 機率統計法 (HMM 隱碼可夫模型與 viterbi 算法)陳鍾誠arrow-up-right

STAT115 Chapter 14.6 Viterbi Algorithm Xiaole Shirley Liuarrow-up-right

Digital Communications: Viterbi Algorithm UConn HKNarrow-up-right

Hidden Markov Models 11: the Viterbi algorithm djp3arrow-up-right

条件随机场 Conditional Random Fields

chevron-right条件随机场 Conditional Random Fieldshashtag

第8课 条件随机场与应用 七月在线 4399 galaarrow-up-right

16讲02 条件随机场的定义与形式 MM liarrow-up-right

任务260: CRF介绍 砖家王二狗arrow-up-right

任务390: 利用CRF模型做命名实体识别 01 砖家王二狗arrow-up-right

Conditional Random Fields - Stanford University (By Daphne Koller) Machine Learning TVarrow-up-right

Conditional Random Fields Natalie Pardearrow-up-right

Lec 9: Conditional Random Fields (1/3)arrow-up-right (2/3)arrow-up-right (3/3)arrow-up-right LUCY Yin

因子分解机Factorization Machine, FM

直观讲解因子分解机Factorization Machine 技术喵arrow-up-right

Steffen Rendle. Factorization machines pdfarrow-up-right 2010 IEEE

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction arxivarrow-up-right 2017

xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems arxivarrow-up-right 2018

Building a Social Network Content Recommendation Service Using Factorisation Machines - Conor Duke Python Irelandarrow-up-right

最大熵

Maximum Entropy Methods Tutorial Complexity Explorerarrow-up-right

Entropy (for data science) Clearly Explained!!! StatQuest with Josh Starmerarrow-up-right

集成学习 Ensemble Learning

三个丑皮匠 顶个诸葛亮

[Tutorialsplanet.NET] Udemy - Ensemble Machine Learning in Python Random Forest, AdaBoost

集成学习 南京大学周志华教授亲讲 Daricsarrow-up-right

序列化方法 AdaBoost(Boosting家族) GradientBoost(XGBoost*) LPBoost

异质配准Alignment

并行化方法 Bagging Random Forest* Random Subspace

E = E' - A', diversity is A'

圣杯 "What is diversity" remains the holy grail problem of ensemble learning

How Do Random Forests Work & What is Ensemble Learning NeuralNinearrow-up-right

多任务学习 Multi-task learning

Community Talks on Day 2 | PyTorch Developer Day 2021 PyTorcharrow-up-right

Stanford CS330: Deep Multi-Task and Meta Learning stanfordonlinearrow-up-right

Stanford CS330: Deep Multi-Task & Meta Learning I Autumn 2021I Professor Chelsea Finn Stanford Onlinearrow-up-right

Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022 Stanford Onlinearrow-up-right

AutoML 机器学习自动化调参

机器学习自动化调参 Ouyang Ruofeiarrow-up-right

神经网络结构搜索 Neural Architecture Search Shusen Wangarrow-up-right

神经网络(十二) 自动神经网络(AutoML)与网络架构搜索(NAS) 技术喵arrow-up-right

Hyperparameter Tuning in Python with GridSearchCV NeuralNinearrow-up-right

ROC Optimal Threshold ► Data Science Exercises #22 Gleb Mikhaylovarrow-up-right

AutoML with Auto-Keras (14.1) Jeff Heatonarrow-up-right

169 - Deep Learning made easy with AutoKeras DigitalSreeniarrow-up-right

171 - AutoKeras for image classification using cifar10 data set DigitalSreeniarrow-up-right

Automated Deep Learning with AutoKeras Data Heroesarrow-up-right

I tried building a AUTO MACHINE LEARNING Web App 15 Minutes Nicholas Renottearrow-up-right

Neural Architecture Search Connor Shortenarrow-up-right

Create Simple AutoML System from Scratch Jeff Heatonarrow-up-right

机器学习可解释性

CVPR'20 Interpretable Machine Learning Tutorial Bolei Zhouarrow-up-right

Talk | 微软亚洲研究院王希廷:基于逻辑规则推理的深度自可解释模型 将门-TechBeat技术社区arrow-up-right

对比学习 contrastive learning

对比学习(Contrastive Learning)是一种无监督学习方法,旨在通过将相似的样本进行比较来学习有用的表示。在对比学习中,算法试图将来自同一类别的样本分组在一起,并将来自不同类别的样本分开。这可以通过比较两个或多个样本的表示来实现,例如将它们映射到一个低维向量空间中。

对比学习通常用于解决许多计算机视觉问题,例如图像分类、目标检测和语义分割。在这些问题中,通常需要大量的有标签数据来训练模型,而对比学习则提供了一种可以使用无标签数据进行训练的替代方案。

在最近的研究中,对比学习已经被证明在许多任务上具有出色的性能,例如自然语言处理和推荐系统。由于其可扩展性和适应性,对比学习已经成为了当前深度学习领域的一个热门话题。

Talk | 剑桥大学在读博士生苏熠暄:对比搜索(Contrastive Search)—当前最优的文本生成算法 将门-TechBeat技术社区arrow-up-right

MoCo 论文逐段精读【论文精读】 Mu Liarrow-up-right 视觉 无监督表示学习 动量对比学习

Momentum Contrast(MoCo)

对比学习论文综述【论文精读】 Mu Liarrow-up-right

少样本学习 Few-Shot Learning Zero Shot One Shot

Meta-Learning and One-Shot Learning macheads101arrow-up-right

Model Agnostic Meta Learning Siavash Khodadadeharrow-up-right

Learning to learn: An Introduction to Meta Learning Machine Learning TVarrow-up-right

Meta learning by Hugo yet Shellarrow-up-right

Ilya Sutskever: OpenAI Meta-Learning and Self-Play | MIT Artificial General Intelligence (AGI) Lex Fridmanarrow-up-right

各種奇葩的元學習 (Meta Learning) 用法 Hung-yi Leearrow-up-right

【機器學習2021】元學習 Meta Learning (一) - 元學習跟機器學習一樣也是三個步驟 Hung-yi Leearrow-up-right

【機器學習2021】元學習 Meta Learning (二) - 萬物皆可 Meta Hung-yi Leearrow-up-right

Few Shot Learning - EXPLAINED! CodeEmporiumarrow-up-right

Few-shot learning in production HuggingFacearrow-up-right

OpenAI's CLIP for Zero Shot Image Classification James Briggsarrow-up-right

Fast Zero Shot Object Detection with OpenAI CLIP James Briggsarrow-up-right

Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022 Stanford Onlinearrow-up-right

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning The Global NLP Labarrow-up-right

注意力

神经网络(四) 注意力机制 技术喵arrow-up-right

RNN模型与NLP应用 Shusen Wangarrow-up-right

Transformer模型 Shusen Wangarrow-up-right

【機器學習 2022】各式各樣神奇的自注意力機制 (Self-attention) 變型 Hung-yi Leearrow-up-right

Attention in Neural Networks CodeEmporiumarrow-up-right

损失函数

机器学习常用损失函数小结 王桂波arrow-up-right

机器学习如何选择回归损失函数的? csdnarrow-up-right

神经网络的损失函数为什么是非凸的? zharrow-up-right

联邦学习 Federated Learning

Chaoyang He uarrow-up-right no瞎哔哔 Barrow-up-right

联邦学习:技术角度的讲解(中文)Introduction to Federated Learning Shusen Wangarrow-up-right

杨强 | 用户隐私,数据孤岛和联邦学习 清华大学智能产业研究院arrow-up-right

刘洋丨联邦学习的技术挑战和应用展望 清华大学智能产业研究院arrow-up-right

分布式机器学习 Shusen Wangarrow-up-right

FedML联邦机器学习开源框架视频教程全集 Chaoyang Hearrow-up-right

[Tutorial] FedML: a research library for federated machine learning Chaoyang Hearrow-up-right

90秒入门联邦学习 Federated learning 微软智汇AIarrow-up-right

什么是联邦学习(Federated Learning)?【知多少】 KnowingAI知智arrow-up-right

详解联邦学习Federated Learning - 知乎 机器朗读arrow-up-right

联邦学习与个性化联邦学习 感知互联与数据智能arrow-up-right

AB测试 A/B testing

5 concepts of A/B testing you should know as a Data Scientist CodeEmporiumarrow-up-right

How to run A/B Tests as a Data Scientist! CodeEmporiumarrow-up-right

A/B Testing:轻松Pass二轮面试!AB 测试具体步骤及参数详解,附具体案例演示及结论分析 Data Application Labarrow-up-right

A/B Testing面试干货: 一个你以为你会但总挡住你拿offer的必学知识点 - A/B测试(第427期) Data Application Labarrow-up-right

商业分析师AB测试设计实战技巧,大厂Business Analyst为你实例解析AB Testing(第520期)Data Application Labarrow-up-right

AB test calculator (pet project) | Gleb Builds #2 Gleb Mikhaylovarrow-up-right

CTC

Phoneme Detection with CNN-RNN-CTC Loss Function - Machine Learning Ali Yektaiearrow-up-right

CTC for Offline Handwriting Recognition Oliver Ninaarrow-up-right

F18 Recitation 8: Connectionist Temporal Classification (CTC) uarrow-up-right

S18 Lecture 14: Connectionist Temporal Classification (CTC) uarrow-up-right

因果推断 Causal inference

什么是因果推断Causal inference?为什么数据科学家要知道这个?(第612期)

Data Application Labarrow-up-right

数据科学读书会 Book 17 – 因果推断 因果效应(Causal Effect) Data Application Labarrow-up-right

数据科学读书会 Book 17 - 因果推断-因果推断的公式和模型 Data Application Labarrow-up-right

探索因果规律之因果推断基础(ft. The Book of Why by Judea Pearl) 技术喵arrow-up-right

因果效应学习基础 技术喵arrow-up-right

《为什么》关于因果关系的新科学 每天听书 Wise AudioBooksarrow-up-right

蚁群算法

【数之道 04】解决最优路径问题的妙招-蚁群ACO算法 FunInCodearrow-up-right

Autoencoder

What is an Autoencoder? | Two Minute Papers #86 Two Minute Papersarrow-up-right

Simple Explanation of AutoEncoders WelcomeAIOverlordsarrow-up-right

Autoencoders - EXPLAINED CodeEmporiumarrow-up-right

What are Autoencoders? IBM Technologyarrow-up-right

Autoencoders - Ep. 10 (Deep Learning SIMPLIFIED) DeepLearning.TVarrow-up-right

85a - What are Autoencoders and what are they used for? DigitalSreeniarrow-up-right

Understanding and Applying Autoencoders in Python! Spencer Paoarrow-up-right

85b - An introduction to autoencoders - in Python DigitalSreeniarrow-up-right

Autoencoder Dimensionality Reduction Python TensorFlow / Keras #CodeItQuick Greg Hoggarrow-up-right

Autoencoders Made Simple! Professor Ryanarrow-up-right

VAE Variational Autoencoder

Ali Ghodsi, Lec : Deep Learning, Variational Autoencoder, Oct 12 2017 [Lect 6.2]

Data Science Coursesarrow-up-right

Variational Autoencoders Arxiv Insightsarrow-up-right

Variational Autoencoders - EXPLAINED! CodeEmporiumarrow-up-right

Autoencoder Explained Siraj Ravalarrow-up-right

178 - An introduction to variational autoencoders (VAE) DigitalSreeniarrow-up-right

179 - Variational autoencoders using keras on MNIST data DigitalSreeniarrow-up-right

VAE-GAN Explained! Connor Shortenarrow-up-right

What are Generative Models? | VAE & GAN | Intro to AI Zhuoyue Lyuarrow-up-right

Build a Stable Diffusion VAE From Scratch using Pytorch freeCodeCamparrow-up-right

变分推断 Variational Inference

通常在研究贝叶斯模型中,需要去求解一个后验概率(Posterior)分布,但是由于求解过程的复杂性,因此很难根据贝叶斯理论求得后验概率分布的公式精确解,所以一种方法是用一个近似解来替代精确解,并使得近似解和精确解的差别不会特别大。一般求解近似解的方法有两种:第一种是基于随机采样的方法,比如用蒙特卡洛采样法去近似求解一个后验概率分布;第二种就是变分贝叶斯推断法。变分贝叶斯法是一类用于贝叶斯估计和机器学习领域中近似计算复杂积分的技术。它关注的是如何去求解一个近似后验概率分布。sarrow-up-right

Variational Inference: Foundations and Modern Methods (NIPS 2016 tutorial)

Steven Van Vaerenbergharrow-up-right

如何简单易懂地理解变分推断(variational inference)? zharrow-up-right

变分自编码

变分推断与变分自编码器 sarrow-up-right

EM算法

The EM Algorithm Peter Greenarrow-up-right

其他

人工智慧在臺灣:產業轉型的契機與挑戰|陳昇瑋研究員 中央研究院Academia Sinicaarrow-up-right

BUILD and SELL your own A.I Model! $500 - $10,000/month (super simple!) Code with Ania Kubówarrow-up-right

Machine Learning Projects You NEVER Knew Existed Nicholas Renottearrow-up-right

数据收集

Data Collection Project Ideas & Demos Tech With Timarrow-up-right

数据标注

ROC and AUC, Clearly Explained! StatQuest with Josh Starmerarrow-up-right

145 - Confusion matrix, ROC and AUC in machine learning DigitalSreeniarrow-up-right

实操揭秘数据标注项目的套路,有点得罪人了,阅后删 月下跑项目arrow-up-right

Image Annotation for Machine Learning Apeer_microarrow-up-right

label encoding, 把标签变成数字

数据增强

数据不均衡 imbalanced data

149 - Working with imbalanced data for ML - Demonstrated using liver disease data DigitalSreeniarrow-up-right

类别不平衡 南京大学周志华 Daricsarrow-up-right

过采样, oversampling smote

欠采样, undersampling EasyEnsemble

阈值移动, threshold moving

数据可视化

Data Visualization with D3 – Full Course for Beginners [2022] freeCodeCamparrow-up-right

Data Visualization with D3.js - Full Tutorial Course(freeCodeCamparrow-up-right) 老版本

Other Level’s uarrow-up-right

dair-ai/ml-visualsarrow-up-right docarrow-up-right wxarrow-up-right

链接: https://pan.baidu.com/s/1CC6BFfiw0DcyVfYTofmH9A 提取码: r4z3

Visualization and Interactive Dashboard in Python: My favorite Python Viz tools — HoloViz Sophia Yangarrow-up-right

pyviz

ContextLab/hypertoolsarrow-up-right 用于获得对高维数据的几何洞察力的 Python 工具箱

Matplotlib

How to Create a Beautiful Python Visualization Dashboard With Panel/Hvplot Thu Vu data analyticsarrow-up-right

szagoruyko/pytorchvizarrow-up-right colab

Plotly

Data Visualization Using Python BOKEH | Python Bokeh Dashboard | Full Course Tangoo Expressarrow-up-right

Python数据可视化详解大全-从简单到完善到高级设置(Matplotlib/Seaborn/Plotly/常用统计图形)云开见明教育科技arrow-up-right

Automatically Visualize Datasets with AutoViz in Python NeuralNinearrow-up-right

Python Data Analysis Projects for 2022 | Data Analysis With Python | Python Training | Simplilearnarrow-up-right

Build a Media Analysis Dashboard with Python & Cloudinary Patrick Loeberarrow-up-right

Data Visualisation Luci Datearrow-up-right

Interactive Web Visualizations with Bokeh in Python NeuralNinearrow-up-right

[Tutorialsplanet.NET] Udemy - 2022 Python Data Analysis & Visualization Masterclass

[Tutorialsplanet.NET] Udemy - The Complete Data Visualization Course 2020

Visualizing Binary Data with 7-Segment Displays Sebastian Laguearrow-up-right

🔴 Visualizing Data Structures and Algorithms with VS Code Visual Studio Codearrow-up-right

Data Visualization Tutorial Krish Naikarrow-up-right using Qliksense

Data Visualisation Luci Datearrow-up-right

D3 JS - Build Data Driven Visualizations with Javascript [svg animation, data engineering] Build Apps With Pauloarrow-up-right

Plotnine: A Different Approach To Data Visualization in Python NeuralNinearrow-up-right

7 Python Data Visualization Libraries in 15 minutes Rob Mullaarrow-up-right

Machine Learning Course - Lesson 2: Visualizing Data with JavaScript Radu Mariescu-Istodorarrow-up-right

Create Interactive Maps & Geospatial Data Visualizations With Python | Real Python Podcast #143 Real Pythonarrow-up-right

Build a Chart using JavaScript (No Libraries) Radu Mariescu-Istodorarrow-up-right

Machine Learning Model Evaluation in JavaScript Radu Mariescu-Istodorarrow-up-right

Machine Learning Course Radu Mariescu-Istodorarrow-up-right

Tableau

Tableau 是一个可视化分析平台,它改变了我们使用数据解决问题的方式,使个人和组织能够充分利用自己的数据。

Tableau in Two Minutes - Tableau Basics for Beginners Penguin Analyticsarrow-up-right

How to create Radial Chart in Tableau| Step-by-step Megha Narangarrow-up-right

Tableau数据可视化,学完就掌握商业分析必备技能了!(第613期) Data Application Labarrow-up-right

Tableau零基础教程 未明学院arrow-up-right

a software version control visualization tool

电子教鞭

inux下netmeeting

红烛电子教鞭

deepin-draw

pointofix

部署 Deploy

How to Deploy Machine Learning Apps? Normalized Nerdarrow-up-right

Kevin Goetsch | Deploying Machine Learning using sklearn pipelines PyDataarrow-up-right

Talk | 清华大学在读博士生胡展豪:可以骗过人工智能检测器的隐身衣 将门-TechBeat技术社区arrow-up-right

Deploy ML Models from Colab with FastAPI & ColabCode - Free ML as a Service 1littlecoderarrow-up-right

Run Your Flask App In Google Colab | [ Updated Way ] Cyber Creedarrow-up-right

How to run Google Colab or Kaggle notebooks on VSCODE (My experience running example code on GPU) convergeMLarrow-up-right

Deploying production ML models with TensorFlow Serving overview TensorFlowarrow-up-right

Deployment of ML Models Krish Naikarrow-up-right

Aladdin Persson uarrow-up-right

Build & Deploy AI SaaS with Reoccurring Revenue (Next.js, OpenAI, Stripe, Tailwind, Vercel) freeCodeCamparrow-up-right

How to Deploy a Web App Using Multiple Methods (Azure, Render, MongoDB Atlas, Koyeb, and more ) freeCodeCamparrow-up-right

👍AI 项目本地部署-通用脚本🟢小白都能用 🟢 通吃GitHub上的AI相关项目🟢 Step by Step 一个脚本搞定 🟢 AI项目本地部署保成功 NiuGee AIarrow-up-right

Deploy Python Applications - Google Cloud Run with Docker NeuralNinearrow-up-right

Deploy Python Applications From Source - Google Cloud Run NeuralNinearrow-up-right

Edge AI 開發板挑選完整指南 VisCircuit 電路筆記arrow-up-right

TensorRT

TensorRT是英伟达(NVIDIA)推出的深度学习推理加速库,它针对深度学习模型的推理阶段进行了优化。TensorRT(TensorRT是Tensor Runtime的缩写)可以通过高度优化的网络层和推理算法,提供低延迟和高吞吐量的深度学习推理性能。

TensorRT的主要功能包括:

  1. 网络优化:TensorRT可以通过对模型进行层级优化、融合相邻层、剪枝和量化等技术,来提高模型的推理性能。它可以自动检测并融合相似操作,减少了内存带宽和计算需求。

  2. 精度校准:TensorRT支持对模型进行精度校准,从而在保持模型准确性的同时,进一步优化推理性能。它可以通过减少浮点运算的位数或者使用定点数表示来降低计算复杂度。

  3. 动态尺寸支持:TensorRT可以处理具有可变输入尺寸的模型。这意味着可以根据实际输入的尺寸动态调整网络的计算图和内存分配。

  4. 多平台和多框架支持:TensorRT可以与多个深度学习框架(如TensorFlow、PyTorch和Caffe)无缝集成,同时支持多个硬件平台(包括NVIDIA的GPU和DPU)。

使用TensorRT可以显著提高深度学习模型的推理速度和效率,特别适用于需要实时性能的应用场景,如自动驾驶、工业自动化、物体检测和视频分析等。

总之,TensorRT是一个优化深度学习推理的强大工具,它通过网络优化、精度校准和动态尺寸支持等功能,提供高性能的推理加速,从而加快了深度学习模型在实际应用中的部署和执行速度。

TensorRT更加偏向于深度学习模型的部署阶段。它专注于对已经训练好的模型进行优化和加速,以提高模型在推理阶段的性能和效率。

NVIDIA TensorRT: High Performance Deep Learning Inference NVIDIA Developerarrow-up-right

扩散模型 Diffusion models

【AIGC】七千字通俗讲解Stable Diffusion | 稳定扩散模型 | CLIP | UNET | VAE | Dreambooth | LoRA 最佳拍档arrow-up-right

Talk | 北京大学杨灵:扩散生成模型的方法、关联与应用 将门-TechBeat技术社区arrow-up-right

Diffusion models explained in 4-difficulty levels AssemblyAIarrow-up-right

DDPM - Diffusion Models Beat GANs on Image Synthesis (Machine Learning Research Paper Explained) Yannic Kilcherarrow-up-right

Ultimate Guide to Diffusion Models | ML Coding Series | Denoising Diffusion Probabilistic Models The AI Epiphanyarrow-up-right

Exploring the NEW Hugging Face Diffusers Package | Diffusion Models w/ Python Nicholas Renottearrow-up-right

Stable Diffusion - What, Why, How? Edan Meyerarrow-up-right 54:07 colab

由浅入深了解Diffusion Model ewrfcasarrow-up-right

Creating Stable Diffusion Interpolation Videos sentdexarrow-up-right

midjourney varrow-up-right

[ML News] Stable Diffusion Takes Over! (Open Source AI Art) Yannic Kilcherarrow-up-right

Harmonai, Dance Diffusion and The Audio Generation Revolution Weights & Biasesarrow-up-right

AI艺术 抖音号: 1764700788arrow-up-right askNK uarrow-up-right

Google's AI: Stable Diffusion On Steroids! 💪 Two Minute Papersarrow-up-right

30年前游戏角色画风一键升级!从粗糙像素风变成高清建模画风 量子位arrow-up-right

Diffusion Models | Paper Explanation | Math Explained Outlierarrow-up-right

Diffusion models from scratch in PyTorch DeepFindrarrow-up-right

JEPA - A Path Towards Autonomous Machine Intelligence (Paper Explained) Yannic Kilcherarrow-up-right

Google's DreamFusion AI: Text to 3D sentdexGoogle's DreamFusion AI: Text to 3D sentdexarrow-up-right

I tried to build a REACT STABLE DIFFUSION App in 15 minutes Nicholas Renottearrow-up-right

Stable Diffusion Is Getting Outrageously Good! 🤯 Two Minute Papersarrow-up-right

Stable Diffusion Version 2: Power To The People… For Free! Two Minute Papersarrow-up-right

[ML News] Multiplayer Stable Diffusion | OpenAI needs more funding | Text-to-Video models incoming Yannic Kilcherarrow-up-right

Google's Prompt-to-Prompt: Diffusion Image Editing sentdexarrow-up-right

Diffusion Model 수학이 포함된 tutorial 디퓨전영상올려야지arrow-up-right

Stable Diffusion in Code (AI Image Generation) - Computerphilearrow-up-right

AI换脸,AI去马赛克是如何实现的?初识人工智能大火算法-扩散模型 基地arrow-up-right

Diffusion and Score-Based Generative Models MITCBMMarrow-up-right

Generative Adversarial Networks (GANs) and Stable Diffusion TensorFlowarrow-up-right

Diffusion Models - Live Coding Tutorial dtransposedarrow-up-right

Diffusion Models - Live Coding Tutorial 2.0 dtransposedarrow-up-right

Kas Kuo Lab uarrow-up-right

MIT 6.S192 - Lecture 22: Diffusion Probabilistic Models, Jascha Sohl-Dickstein Ali Jahanianarrow-up-right

Diffusion Models for Inverse Problems Inference & Control Grouparrow-up-right

Planning with Diffusion for Flexible Behavior Synthesis Inference & Control Grouparrow-up-right

Hierarchically branched diffusion models Inference & Control Grouparrow-up-right

Diffusion models as plug-and-play priors Inference & Control Grouparrow-up-right

Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications Arash Vahdatarrow-up-right

【stable diffusion】由淺入深了解Diffusion擴散模型 HKCTOarrow-up-right 唐宇迪

AI Art Taking World By Storm - Diffusion Models Overview deeplizardarrow-up-right

AI Art for Beginners - Stable Diffusion Crash Course deeplizardarrow-up-right

CS 198-126: Lecture 12 - Diffusion Models Machine Learning at Berkeleyarrow-up-right

What are Diffusion Models? Ari Seffarrow-up-right

Talk | MIT许逸伦:解锁由物理启发的深度生成模型-从扩散模型到泊松流模型 将门-TechBeat技术社区arrow-up-right

[專題解說] Introduction to Diffusion Model 擴散模型入門 [附程式碼] 教學 工gin師arrow-up-right

號稱打敗 GAN 的生成模型: Diffusion Models TJWeiarrow-up-right

Stable Diffusion

Stable Diffusion Online sarrow-up-right

AI Art with Stable Diffusion (Women of the World) deeplizardarrow-up-right

最火的AI作图模型,这5款免费下载,含提示词,配合 Stable-diffusion 来制作高清大图吧! | 零度解说arrow-up-right

Generating Realistic AI Images with Stable Diffusion NeuralNinearrow-up-right

为什么AI画画能既离谱又烧钱啊?? 量子位arrow-up-right

Stable Diffusion不用獨立顯卡,不需上網連線,10分鐘超簡單安裝教學就把AI繪圖搬回家,有NVIDIA獨顯繪畫更快,Stable Diffusion能單機使用,比Midjourney好用 老阿貝arrow-up-right

Lesson 9: Deep Learning Foundations to Stable Diffusion, 2022 Jeremy Howardarrow-up-right

由Stabiliti AI在2022年发布的工具 uarrow-up-right 抓取了50亿公开图片, 可以用文字和图片生成图片 colab Chillout_mix

civitaiarrow-up-right

云端AI绘图软件+本地Stable Diffusion免安装版+懒人常用模型包,完全使用攻略-猩猩看了都会用的AI绘图视频教程 番茄市常听arrow-up-right

AI For You uarrow-up-right

Easiest Way To Install Stable Diffusion & Generate AI Images NeuralNinearrow-up-right

教你用 Google colab 免費玩 Stable Diffusion 作出擬真美女圖片! Lora、ControlNet 教學(iPhone、Android、筆電、Mac 均適用) 電腦王阿達arrow-up-right

Stable Diffusion XL varrow-up-right

JW608 Plays With Stable Diffusion! JW608arrow-up-right

[Stable Diffusion AI畫圖插件] Composable LoRA加強版! 支援LoCon、LyCORIS,並能讓LoRA只在特定步數作用! 張宇帆arrow-up-right

Stable Diffusion教學 使用Lora製作AI網紅 Kas Kuo Labarrow-up-right

Stable Diffusion 教學 Kas Kuo Labarrow-up-right

AI绘画】给美女们更换衣服 零度解说arrow-up-right

Stable Diffusion Tutorials, Automatic1111 Web UI & Google Colab Guides, DreamBooth, Textual Inversion / Embedding, LoRA, AI Upscaling, Video to Anime SECoursesarrow-up-right

Stable Diffusion Got Supercharged - For Free! Two Minute Papersarrow-up-right

​生成扩散模型漫谈:条件控制生成结果 PaperWeeklyarrow-up-right 有参考文献

生成扩散模型漫谈(九):条件控制生成结果 spacesarrow-up-right

生成扩散模型漫谈(十七):构建ODE的一般步骤(下) spacesarrow-up-right

工gin師 uarrow-up-right

DiffusionModel 工gin師arrow-up-right

Stable Diffusion 系列 工gin師arrow-up-right

Mac上最好用的StableDiffusion客户端,Draw Things详细演示!The best local AI painting Stable DIffusion client Intro. 工具狂Toolbuddyarrow-up-right

Stable Diffusion 進階教學:Colab 如何套 Lora、動漫圖真人化、網拍模特不求人、黑白線稿自動上色 電腦王阿達arrow-up-right

Stable Diffusion教程 从入门到精通 氪学家arrow-up-right

Stable Diffusion 电商系列课程 氪学家arrow-up-right

真人LORA训练全攻略!看这篇就够了 LORA模型 Stable diffusion 教程 真人模型 阿硕讲AIarrow-up-right

大白话AIarrow-up-right | 图像生成模型之DDPM | 扩散模型 | 生成模型 | 概率扩散去噪生成模型 | Diffusion Model

MultiDiffusion

MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation sarrow-up-right arxivarrow-up-right gitarrow-up-right

pkuliyi2015/multidiffusion-upscaler-for-automatic1111arrow-up-right

高清放大插件MultiDiffusion 小显存也能跑出4k图 低配福音 赛博法师arrow-up-right

基础模型 Foundation Models Large Models

火遍全网的AI大模型,华为能搞出什么新花样?老石谈芯arrow-up-right

AI大模型是什么?可以让人工智能和人类一样?GPT-3、M6大模型 啃芝士arrow-up-right

#84 LAURA RUIS - Large language models are not zero-shot communicators [NEURIPS UNPLUGGED] Machine Learning Street Talkarrow-up-right

Talk | 微信AI高级研究员苏辉:微信AI大规模预训练语言模型WeLM 将门-TechBeat技术社区arrow-up-right

Real World Applications of Large Models Weights & Biasesarrow-up-right

Foundation models and the next era of AI Microsoft Researcharrow-up-right

Emily M. Bender — Language Models and Linguistics Weights & Biasesarrow-up-right

多模态 Multi-modal

多模态论文串讲·上【论文精读】 Mu Liarrow-up-right 跟李沐学AIarrow-up-right

多模态论文串讲·下【论文精读】 Mu Liarrow-up-right

CLIP 论文逐段精读【论文精读】 Mu Liarrow-up-right

CLIP 改进工作串讲(上)【论文精读】Mu Liarrow-up-right

CLIP 改进工作串讲(下)【论文精读】 Mu Liarrow-up-right

ViLT 论文精读【论文精读】 Mu Liarrow-up-right

ViT论文逐段精读【论文精读】 Mu Liarrow-up-right mli/paper-readingarrow-up-right

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained) Yannic Kilcherarrow-up-right

AI Hairball - ChatGPT + Stable Diffusion deeplizardarrow-up-right

Talk | 东京大学博士生刘海洋:多模态驱动谈话动作生成-质量与多样性 将门-TechBeat技术社区arrow-up-right

OpenAI CLIP Explained | Multi-modal ML James Briggsarrow-up-right

Fast Zero Shot Object Detection with OpenAI CLIP James Briggsarrow-up-right

OpenAI's CLIP for Zero Shot Image Classification James Briggsarrow-up-right

Fast intro to multi-modal ML with OpenAI's CLIP James Briggsarrow-up-right

OpenAI CLIP: ConnectingText and Images (Paper Explained) Yannic Kilcherarrow-up-right

Domain-Specific Multi-Modal Machine Learning with CLIP Pineconearrow-up-right

CLIP: Connecting Text and Images Connor Shortenarrow-up-right

OpenAI CLIP - Connecting Text and Images | Paper Explained Aleksa Gordić - The AI Epiphanyarrow-up-right

OpenAI’s CLIP explained! | Examples, links to code and pretrained model AI Coffee Break with Letitiaarrow-up-right

Talk | 微软高级研究员杨征元:统一的视觉语言模型 将门-TechBeat技术社区arrow-up-right

Vision Transformer (ViT) 用于图片分类 Shusen Wangarrow-up-right

Vision Transformers (ViT) Explained + Fine-tuning in Python James Briggsarrow-up-right

ImageBind Meta AI

只有Meta才懂多模态,ImageBind,在一个嵌入的空间中补齐六种模态。像人一样,感受完整的空间。突破语言的桎梏,将关注度重新吸引回元宇宙。 老范讲故事arrow-up-right

【分享】LLM论文研读 | ImageBind One Embedding Space To Bind Them All | 六种模态大统一 | Kevin分享 | Meta AI 最佳拍档arrow-up-right

facebookresearch/ImageBindarrow-up-right

ImageBind: a new way to ‘link’ AI across the senses metaarrow-up-right

AI Safety

【機器學習2022】自然語言處理上的對抗式攻擊 (由姜成翰助教講授) Hung-yi Leearrow-up-right 1arrow-up-right 2arrow-up-right

Talk | 清华大学在读博士生胡展豪:可以骗过人工智能检测器的隐身衣 将门-TechBeat技术社区arrow-up-right

Talk | 几何的魅力: 黑盒攻击新策略 将门-TechBeat技术社区arrow-up-right

ML会议

Steven Van Vaerenbergh uarrow-up-right

CVPR

NIPS

ICLR

ICML

ACML

NeurIPS

MLSP

CompSci 188

谷歌学术标签

Book

神经网络与深度学习(sarrow-up-right, 翻译arrow-up-right, )

复旦大学邱锡鹏教授的《神经网络与深度学习》 人工智能学习室arrow-up-right 19:05:43

机器学习实战(Machine Learning in Action) (书栈arrow-up-right, )

Interpretable Machine Learning (书栈arrow-up-right, )

ML Kit 中文文档 (书栈arrow-up-right, )

spark机器学习算法研究和源码分析 (书栈arrow-up-right, )

ml5.js - Machine Learning for Web (书栈arrow-up-right, )

机器学习训练秘籍(Machine Learning Yearning 中文版) (书栈arrow-up-right, )

Pipcook v1.0 机器学习工具使用教程 (书栈arrow-up-right, )

Deeplearning Algorithms Tutorial(深度学习算法教程) (书栈arrow-up-right, gitarrow-up-right, )

花书 deeplearningbook(sarrow-up-right, )

awesome-material gitarrow-up-right

foochane/books gitarrow-up-right

lovingers/ML_Books gitarrow-up-right 差评

深度学习入门-基于Python的理论与实现 deep-learning-from-scratch gitarrow-up-right

周志华 机器学习 西瓜书

【一起啃书】机器学习西瓜书白话解读 致敬大神arrow-up-right 13:10:47

周志华《机器学习》学习笔记 书栈arrow-up-right gitarrow-up-right gitarrow-up-right

南京大学周志华教授亲讲 Daricsarrow-up-right 6:20:50

机器学习初步- 南京大学- 学堂在线arrow-up-right

机器学习-周志华-学习记录-第一章绪论 小瘪️arrow-up-right csdn

【完整版-南京大学-机器学习】全66讲 OpenCV图像处理arrow-up-right 58:28:56

南京大学周志华完整版100集【机器学习入门教程】人工智能-研究所arrow-up-right 96:21:52

周志华《机器学习》西瓜书+李航《统计学习方法》 CV前沿与深度学习arrow-up-right 54:56:53

南京大学人工智能学院院长周志华《机器学习西瓜书》白话解读,一起啃书! AI技术星球 28:27:48

MLAPP

花书

MingchaoZhu/DeepLearningarrow-up-right 数学推导、原理剖析与源码级别代码实现

百面深度学习

百面机器学习

统计学习方法

求推荐一部以李航的《统计学习方法》为教材的教学视频?知乎arrow-up-right

深度之眼《统计学习方法》第二版啃书指导视频 深度之眼官方账号arrow-up-right 08:55:48

大数据机器学习(袁春)电子工程世界arrow-up-right 共113课时 15小时39分33秒 MM liarrow-up-right

《统计学习方法》第二版的代码实现 gitarrow-up-right

《统计学习方法·第2版》手推公式+算法实例+Python实现 喜欢AI的程序猿arrow-up-right 22h

统计学习 Statistical Learning Stanford Onlinearrow-up-right

周志华《机器学习》西瓜书+李航《统计学习方法》 CV前沿与深度学习arrow-up-right 54:56:53

PRML

PRML/PRMLTarrow-up-right sarrow-up-right Matlab code of machine learning algorithms in book PRML zharrow-up-right

ESL

其他

人工智能时代 李开复 Acsic Peoplearrow-up-right

2020 Machine Learning Roadmap (still valid for 2021) Daniel Bourkearrow-up-right

Why AI is Harder Than We Think (Machine Learning Research Paper Explained) Yannic Kilcherarrow-up-right

Discovering ketosis: how to effectively lose weight gitarrow-up-right

imhuay/studies 学习笔记 gitarrow-up-right

25th-engineer/DaChuangFiles gitarrow-up-right

How to Do Freelance AI Programming Siraj Ravalarrow-up-right

Variational Autoencoders - EXPLAINED! CodeEmporiumarrow-up-right

什么是 MLOps? Morgan Yongarrow-up-right

Productionize Your ML Workflows with MLOps Tools Weights & Biasesarrow-up-right

ml-tooling/best-of-ml-pythonarrow-up-right 项目包括:机器学习框架、数据可视化、图像、NLP和文本、图、金融领域、时间序列等等,内容非常全

7 FREE A.I. tools for YOU today! (plus 1 bonus!) Artificial Intelligence and Blockchainarrow-up-right

The History of Artificial Intelligence [Documentary] Futurology — An Optimistic Futurearrow-up-right

Artificial Intelligence: Exploring the Pros and Cons for a Smarter Future Things to Knowarrow-up-right

chevron-rightYoshua Bengiohashtag

From Deep Learning of Disentangled Representations to Higher-level Cognition Microsoft Researcharrow-up-right

chevron-rightGeoffrey Hintonhashtag

A Fireside Chat with Turing Award Winner Geoffrey Hinton, Pioneer of Deep Learning (Google I/O'19) TensorFlowarrow-up-right

Geoff Hinton explains the Forward-Forward Algorithm Eye on AIarrow-up-right

Geoff Hinton on Forward-Forward Eye on AIarrow-up-right

This Algorithm Could Make a GPT-4 Toaster Possible Edan Meyerarrow-up-right

Full interview: "Godfather of artificial intelligence" talks impact and potential of AI CBS Morningsarrow-up-right

Geoffrey Hinton: The Foundations of Deep Learning Elevatearrow-up-right

深入学习英雄: 吴恩达采访 Geoffrey Hinton Preserve Knowledgearrow-up-right

This Canadian Genius Created Modern AI Bloomberg Originalsarrow-up-right

chevron-rightAndrew Nghashtag

Andrew Ng: Deep Learning, Education, and Real-World AI | Lex Fridmanarrow-up-right Podcast #73

Andrew Ng: Advice on Getting Started in Deep Learning | AI Podcast Clips Lex Fridmanarrow-up-right

chevron-rightMichael I. Jordanhashtag

Michael I. Jordan: Machine Learning, Recommender Systems, and Future of AI | Lex Fridmanarrow-up-right Podcast #74

chevron-rightYann LeCunhashtag

Yann LeCun u

Yann LeCunarrow-up-right: "A Path Towards Autonomous AI", Baidu 2022-02-22

Yann LeCun: Deep Learning, ConvNets, and Self-Supervised Learning | Lex Fridmanarrow-up-right Podcast #36

Yann LeCun: Dark Matter of Intelligence and Self-Supervised Learning | Lex Fridmanarrow-up-right Podcast #258

Yann LeCun Lecture 8/8 Unsupervised Learning trwappersarrow-up-right

John Carmack will Develop True Artificial Intelligence. Here is Why Machine Learning with Philarrow-up-right

Is ChatGPT A Step Toward Human-Level AI? — With Yann LeCun, Meta Chief AI Scientist Alex Kantrowitzarrow-up-right

最后更新于