机器学习AI算法工程
AI之禅 机器之心 ATYUN订阅号 AI科技大本营的专栏 BestSDK 云+直播
平台
ML
AMLD指的是Applied Machine Learning Days(应用机器学习日),是一个面向机器学习和人工智能领域的国际会议,也是一个非营利性组织。该组织致力于促进机器学习和人工智能技术的应用和发展,并为学术界、工业界和政府机构提供交流和合作的平台。AMLD成立于2016年,总部位于瑞士日内瓦。该组织定期举办国际会议、研讨会和培训课程,吸引了来自全球各地的学者、研究人员、工程师、企业家和政府官员参加。
北风网Python人工智能 砖家王二狗
麦子人工智能视频教程 砖家王二狗
麦子人工智能视频教程(第一阶段:Python数据分析与建模库)
麦子人工智能视频教程(第二阶段:机器学习经典算法)
麦子人工智能视频教程(第三阶段:机器学习案例实战)
DL
Data Science
UP主
ML up
arXiv是由康奈尔大学运营的一个非营利性科学论坛,通常科学家在论文正式发表前会预先发到arXiv上防止自己的理论被剽窃.
DL up
Data Science up
ai工具
框架
Long Liangqu
深度学习与PyTorch教程 Long Liangqu 网易云课堂
深度学习与TensorFlow 2入门实战 Long Liangqu 网易云课堂 味道
深度学习与TensorFlow 2 Long Liangqu
magnet:?xt=urn:btih:F60CCA8F091866C1F6F35460882285386719588B&dn=%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%8EPyTorch%E5%85%A5%E9%97%A8%E5%AE%9E%E6%88%98%E6%95%99%E7%A8%8B
Tensorflow
Tensorflow Object Detection in 5 Hours with Python
[Tutorialsplanet.NET] Udemy - TensorFlow 2.0 Practical Advanced
PyTorch
PyTorch - Python Deep Learning Neural Network API
Deep Learning with PyTorch: Zero to GANs freeCodeCamp
Keras
Deep Learning with TensorFlow 2.0 and Keras
JAX
课程
Artificial Intelligence (AI) vs Machine Learning vs Deep Learning vs Data Science codebasics
机器学习算法地图 SIGAI
ML
No Black Box Machine Learning Course – Learn Without Libraries
MIT公开课6.034 人工智能1 (带字幕) 唐逸豪
Stanford CS229: Machine Learning
[Tutorialsplanet.NET] Udemy -Artificial Intelligence with Python
[Tutorialsplanet.NET] Udemy - Machine Learning, Deep Learning and Bayesian Learning
概率机器学习 Probabilistic Machine Learning
图机器学习 Machine Learning with Graphs
DL
2022 Fall 台大資訊 深度學習之應用 NTU CSIE ADL
MIT 6.S192:艺术、美学和创造力的深度学习
伊利亚·苏茨克沃 苏神 OpenAI的联合创始人和首席科学家
谷歌大脑 人工智能科学家 AlphaGo论文作者之一
Greg Brockman OpenAI CEO CTO
动手学深度学习
DeepLearningAI
Deep Learning Specialization
Data Science
数据科学
Python for Data Science - Course for Beginners (Learn Python, Pandas, NumPy, Matplotlib)
数据清理
The Ultimate Guide to Data Cleaning towardsdatascience
斯坦福CS329P:实用机器学习 Mu Li 主页
算法
奥卡姆剃刀原理(ccam's razor) 严伯钧 v8:33 entities should not be multi-plied beyond necessity
LightGBM(site, paper, github, wiki, pypi)
Dijkstra's Algorithm(v, )
极客学院机器学习训练营
机器学习环境配置手册 github 0期课程大纲
scikit-learn (sklearn)
预测
08预测 课堂商业
Kaggle Titanic Survival Prediction
分类
线性回归 & 线性模型 Linear Regression and Linear Models
多元线性回归, multi variate Linear Regression
逻辑回归 Logistic Regression
决策树
随机森林 Random Forests
MLP
KAN
聚类 Clustering 集簇
常见的聚类方法
原型聚类
亦称"基于原型的聚类"(prototype-based clustering)
假设:聚类结构能够通过一组原型刻画
过程:先对原型初始化, 然后对原型进行迭代更新求解
代表:k均值聚类, 学习向量量化(LVQ), 高斯混合聚类
密度聚类
亦称"基于密度的聚类"(density-based clustering)
假设:聚类结构能够通过样本分布的紧密程度确定
过程:从样本密度的角度来考察样本之间的可连续性, 并基于可连接样本不断扩展聚类蔟
代表:DBSCAN, OPTICS, DENCLUDE
层次聚类(hierarchical clustering)
假设:能够产生不同粒度的聚类结果
过程:在不同层次对数据集进行划分, 从而形成树形的聚类结构
代表:AGNES(自低向上), DIANA(自顶向下)
回归 Regression
KNN
【千锋大数据】3天快速入门机器学习(9集) 千锋教育
How kNN algorithm works Thales Sehn Körting
How to implement KNN from scratch with Python AssemblyAI
Heart Disease Predictor Model Using KNN Classifier |Machine Learning| Python | Project For Beginners AI Sciences
Implementation of KNN Algorithm using Iris Dataset in Jupyter Notebook | JAcademy
时间序列 Time Series
数据科学读书会 Book 15 – 《Hands-on Time Series Analysis with Python》
Time Series Analysis:Data Scientist是如何做时间序列分析的?(第566期)
Time Series Forecasting Theory
支持向量机 SVM
Kernel Method
神经网络, Neural Networks, NN
万能近似定理(universal approximation theorrm)
RBF Networks
参数追踪 参数可视化
Visualize Neural Networks
自动微分 自动求导
计算图
"图计算"和"计算图"是不同的概念,尽管它们之间有一些关联。
"计算图"通常指的是一种表示计算过程的图形结构,其中节点表示计算操作,边缘表示数据流。它通常被用于深度学习中,以表示神经网络的计算过程。在计算图中,每个节点执行特定的数学运算,并将结果传递给后续节点。这种图形表示方式有助于优化计算和自动求导。
"图计算"是一种计算模型,它使用图形结构来表示和处理数据。它的基本思想是将数据存储为图形结构,然后使用图形算法来处理数据。图计算可以应用于许多领域,例如社交网络分析、推荐系统和生物信息学。
因此,尽管它们之间有一些相似之处,但"图计算"和"计算图"是不同的概念。"计算图"是一种表示计算过程的图形结构,而"图计算"是一种使用图形结构来表示和处理数据的计算模型。
RNN Recurrent Neural Networks
LSTM
蒙特卡洛 Monte Carlo
蒙特卡洛树搜索 Monte Carlo Tree Search (MCTS)
将简单的均匀分布抽样转化为复杂分布抽样的方法:
逆转换方法 Inverse Transform Sampling
接受拒绝抽样 Acceptance Rejection Sampling
马尔可夫 马尔科夫 Markov
[Tutorialsplanet.NET] Udemy - Unsupervised Machine Learning Hidden Markov Models in Python
MCMC, Markov Chain Monte Carlo
基于采样的马尔可夫链蒙特卡罗(Markov Chain Monte Carlo,简称MCMC)方法
Box-Muller算法?
接受拒绝抽样 Acceptance Rejection Sampling
metropolis Hastings
Gibbs Sampling
维特比算法 The Viterbi Algorithm
维特比算法 The Viterbi Algorithm
条件随机场 Conditional Random Fields
条件随机场 Conditional Random Fields
因子分解机Factorization Machine, FM
最大熵
集成学习 Ensemble Learning
[Tutorialsplanet.NET] Udemy - Ensemble Machine Learning in Python Random Forest, AdaBoost
序列化方法 AdaBoost(Boosting家族) GradientBoost(XGBoost*) LPBoost
异质配准Alignment
并行化方法 Bagging Random Forest* Random Subspace
E = E' - A', diversity is A'
圣杯 "What is diversity" remains the holy grail problem of ensemble learning
多任务学习 Multi-task learning
AutoML 机器学习自动化调参
机器学习可解释性
对比学习 contrastive learning
对比学习(Contrastive Learning)是一种无监督学习方法,旨在通过将相似的样本进行比较来学习有用的表示。在对比学习中,算法试图将来自同一类别的样本分组在一起,并将来自不同类别的样本分开。这可以通过比较两个或多个样本的表示来实现,例如将它们映射到一个低维向量空间中。
对比学习通常用于解决许多计算机视觉问题,例如图像分类、目标检测和语义分割。在这些问题中,通常需要大量的有标签数据来训练模型,而对比学习则提供了一种可以使用无标签数据进行训练的替代方案。
在最近的研究中,对比学习已经被证明在许多任务上具有出色的性能,例如自然语言处理和推荐系统。由于其可扩展性和适应性,对比学习已经成为了当前深度学习领域的一个热门话题。
少样本学习 Few-Shot Learning Zero Shot One Shot
注意力
损失函数
机器学习常用损失函数小结 王桂波
机器学习如何选择回归损失函数的? csdn
神经网络的损失函数为什么是非凸的? zh
联邦学习 Federated Learning
AB测试 A/B testing
CTC
因果推断 Causal inference
什么是因果推断Causal inference?为什么数据科学家要知道这个?(第612期)
蚁群算法
Autoencoder
VAE Variational Autoencoder
Ali Ghodsi, Lec : Deep Learning, Variational Autoencoder, Oct 12 2017 [Lect 6.2]
变分推断 Variational Inference
Variational Inference: Foundations and Modern Methods (NIPS 2016 tutorial)
变分自编码
EM算法
其他
数据收集
数据标注
数据增强
数据不均衡 imbalanced data
过采样, oversampling smote
欠采样, undersampling EasyEnsemble
阈值移动, threshold moving
数据可视化
链接: https://pan.baidu.com/s/1CC6BFfiw0DcyVfYTofmH9A 提取码: r4z3
[Tutorialsplanet.NET] Udemy - 2022 Python Data Analysis & Visualization Masterclass
[Tutorialsplanet.NET] Udemy - The Complete Data Visualization Course 2020
Tableau 是一个可视化分析平台,它改变了我们使用数据解决问题的方式,使个人和组织能够充分利用自己的数据。
a software version control visualization tool
部署 Deploy
TensorRT
TensorRT是英伟达(NVIDIA)推出的深度学习推理加速库,它针对深度学习模型的推理阶段进行了优化。TensorRT(TensorRT是Tensor Runtime的缩写)可以通过高度优化的网络层和推理算法,提供低延迟和高吞吐量的深度学习推理性能。
TensorRT的主要功能包括:
网络优化:TensorRT可以通过对模型进行层级优化、融合相邻层、剪枝和量化等技术,来提高模型的推理性能。它可以自动检测并融合相似操作,减少了内存带宽和计算需求。
精度校准:TensorRT支持对模型进行精度校准,从而在保持模型准确性的同时,进一步优化推理性能。它可以通过减少浮点运算的位数或者使用定点数表示来降低计算复杂度。
动态尺寸支持:TensorRT可以处理具有可变输入尺寸的模型。这意味着可以根据实际输入的尺寸动态调整网络的计算图和内存分配。
多平台和多框架支持:TensorRT可以与多个深度学习框架(如TensorFlow、PyTorch和Caffe)无缝集成,同时支持多个硬件平台(包括NVIDIA的GPU和DPU)。
使用TensorRT可以显著提高深度学习模型的推理速度和效率,特别适用于需要实时性能的应用场景,如自动驾驶、工业自动化、物体检测和视频分析等。
总之,TensorRT是一个优化深度学习推理的强大工具,它通过网络优化、精度校准和动态尺寸支持等功能,提供高性能的推理加速,从而加快了深度学习模型在实际应用中的部署和执行速度。
TensorRT更加偏向于深度学习模型的部署阶段。它专注于对已经训练好的模型进行优化和加速,以提高模型在推理阶段的性能和效率。
扩散模型 Diffusion models
基础模型 Foundation Models Large Models
多模态 Multi-modal
ImageBind Meta AI
AI Safety
ML会议
CVPR
NIPS
ICLR
ICML
ACML
NeurIPS
MLSP
CompSci 188
谷歌学术标签
Book
周志华 机器学习 西瓜书
南京大学人工智能学院院长周志华《机器学习西瓜书》白话解读,一起啃书! AI技术星球 28:27:48
MLAPP
Machine Learning A Probabilistic Perspective
花书
MingchaoZhu/DeepLearning 数学推导、原理剖析与源码级别代码实现
百面深度学习
百面机器学习
统计学习方法
PRML
PRML/PRMLT s Matlab code of machine learning algorithms in book PRML zh
ESL
其他
Yoshua Bengio
From Deep Learning of Disentangled Representations to Higher-level Cognition Microsoft Research
Geoffrey Hinton
A Fireside Chat with Turing Award Winner Geoffrey Hinton, Pioneer of Deep Learning (Google I/O'19) TensorFlow
Geoff Hinton explains the Forward-Forward Algorithm Eye on AI
Geoff Hinton on Forward-Forward Eye on AI
This Algorithm Could Make a GPT-4 Toaster Possible Edan Meyer
Full interview: "Godfather of artificial intelligence" talks impact and potential of AI CBS Mornings
Geoffrey Hinton: The Foundations of Deep Learning Elevate
深入学习英雄: 吴恩达采访 Geoffrey Hinton Preserve Knowledge
This Canadian Genius Created Modern AI Bloomberg Originals
Andrew Ng
Andrew Ng: Deep Learning, Education, and Real-World AI | Lex Fridman Podcast #73
Andrew Ng: Advice on Getting Started in Deep Learning | AI Podcast Clips Lex Fridman
Michael I. Jordan
Michael I. Jordan: Machine Learning, Recommender Systems, and Future of AI | Lex Fridman Podcast #74
Yann LeCun
Yann LeCun u
Yann LeCun: "A Path Towards Autonomous AI", Baidu 2022-02-22
Yann LeCun: Deep Learning, ConvNets, and Self-Supervised Learning | Lex Fridman Podcast #36
Yann LeCun: Dark Matter of Intelligence and Self-Supervised Learning | Lex Fridman Podcast #258
Yann LeCun Lecture 8/8 Unsupervised Learning trwappers
John Carmack will Develop True Artificial Intelligence. Here is Why Machine Learning with Phil
Is ChatGPT A Step Toward Human-Level AI? — With Yann LeCun, Meta Chief AI Scientist Alex Kantrowitz
NVIDIA Developer(, , , , )
Scientific Computing and Artificial Intelligence
MIT OpenCourseWare(, , , , , , , , )
Компьютерные науки计算机科学(, )
Center for Language and Speech (CLSP) @ JHU
Machine Learning at Berkeley
The Alan Turing Institute
Tübingen Machine Learning
MLSS Iceland 2014 Machine Learning Summer School
Training Data for Machine Learning(, )
ABC of DataScience and ML(, )
Machine Learning: ML AI(, )
Python & Machine Learning(, )
HW accelerators eating AI(, )
Data science must needed(, )
Psychology of Machines(, )
AMLD Africa Applied Machine Learning Days
Carnegie Mellon University Deep Learning
Data Engineering Minds(, )
Data Sciences - Analytics(, )
Data Analytics or EnGines(, )
Data Science in Marketing(, )
爱可可-爱生活/Guang Chen/fly51fly/
StatQuest with Josh Starmer(, )
Artificial Intelligence - All in One
Machine Learning with Phil
Artificial Intelligence and Blockchain
Artificial Intelligence Society
Parallel Computing and Scientific Machine Learning
Machine Learning Street Talk
Jeremy Howard — The Story of fast.ai and Why Python Is Not the Future of ML
Jeremy Howard: fast.ai Deep Learning Courses and Research | Podcast #35
Data Science Conference(, )
2022 Version of Applications of Deep Neural Networks for TensorFlow and Keras (Washington University in St. Louis)
I built the same model with TensorFlow and PyTorch | Which Framework is better?
TensorFlow(, , , , , , , , , , , 书栈(, , ), )
jikexueyuanwiki/ TensorFlow官方文档中文版 s 过时
【北京大学】人工智能 Tensorflow2.0 mocm
人工智能 Tensorflow 视频教程全集| 5 小时从入门到精通
TensorFlow 2.0 Complete Course - Python Neural Networks for Beginners Tutorial 6:52:07 Tech With Tim
TensorFlow 2.0 Crash Course
TensorFlow 2 Beginner Course
Deep Learning for JavaScript Hackers | Use TensorFlow.js in the Browser
TensorFlow And Keras Tutorial | Deep Learning With TensorFlow & Keras | Deep Learning |
联想拯救者R9000P安装Ubuntu 21.04系统及运行TensorFlow1.X代码
Google's Machine Learning Virtual Community Day
TensorFlow Lite for Edge Devices - Tutorial
Android Apps YOLOv4 TFLite Object Detection Android App Tutorial Using YOLOv4 Tiny, YOLOv4, and YOLOv4 Custom
Learn TensorFlow and Deep Learning (beginner friendly code-first introduction)
Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 1/2 10:15:27
Learn TensorFlow and Deep Learning fundamentals with Python (code-first introduction) Part 2/2 3:57:54
Deep Learning for Computer Vision with TensorFlow – Complete Course 1:13:16:40 colab
PyTorch PyTorch(, , , , )
pytorch/ the official PyTorch tutorials
PyTorch for Deep Learning & Machine Learning – Full Course 1:01:37:25
Getting Started With PyTorch (C++)
Image Classification using CNN from Scratch in Pytorch
Neural Network Programming - Deep Learning with PyTorch
PyTorchZeroToAll (in English)
PyTorch for Deep Learning - Full Course / Tutorial 9:41:39
Deep Learning and Neural Networks with Python and Pytorch
TorchScript and PyTorch JIT | Deep Dive
PyTorch and Monai for AI Healthcare Imaging - Python Machine Learning Course
PyTorch Tutorials - Complete Beginner Course
Introduction to PyTorch Tensors
PyTorch - Deep Learning Course | Full Course | Session -1 | Python
Getting Started With PyTorch (C++)
PyTorch on Apple Silicon | Machine Learning
Invited Talk: - By Facebook Research Scientist Shen Li
7 PyTorch Tips You Should Know
Learn PyTorch for deep learning in a day. Literally. 1:01:36:57
PyTorch Transfer Learning with a ResNet - Tutorial
How to Install PyTorch GPU for Mac M1/M2 with Conda
Saving and Loading a PyTorch Neural Network (3.3)
I Built an A.I. Voice Assistant using PyTorch - part 1, Wake Word Detection
bentrevett/ PyTorch Seq2Seq
PyTorch 深度學習快速入門教程(絕對通俗易懂)| 土堆教程
Machine Learning Course With Python
Deep Learning With PyTorch - Full Course
Pytorch+cpp/cuda extension 教學 tutorial
Install PyTorch for Windows GPU
PyTorch Basics and Gradient Descent |
PyTorch Images and Logistic Regress |
Training Deep Neural Networks on GPUs |
Image Classification with Convolutional Neural Networks |
Data Augmentation, Regularization, and ResNets |
Image Generation using GANs |
PyTorch: Zero to GANs Dhanabhon
Deep Learning with PyTorch: Zero to GANs
Keras(, , , , 文档(, , ), )
Keras - Python Deep Learning Neural Network API
Keras with TensorFlow Course - Python Deep Learning and Neural Networks for Beginners Tutorial
Deep learning using keras in python
Intro to JAX: Accelerating Machine Learning research
JAX Crash Course - Accelerating Machine Learning code!
JAX Diffusers Community Sprint Talks: Day 1
JAX Diffusers Community Sprint Talks: Day 2
JAX Diffusers Community Sprint Talks: Day 3
AppForAI 人工智慧開發工具 Windows 及 Linux 版操作介紹 (淡江大學資管系)
AppForAI-Windows 人工智慧開發工具
Machine Learning Explainability Workshop I Stanford
Machine Learning for Everybody – Full Course
【机器学习 | 理论与实战】 编程 / Python(出品)
Complete Machine Learning and Data Science Courses
MIT 16.412J Cognitive Robotics, Spring 2016
Clustering and Segmentation Algorithms explained
Machine Learning Tutorial Python | Machine Learning For Beginners
Machine Learning Algorithm
【機器學習 2023】(生成式 AI) Autoregressive
Next Step of Machine Learning (Hung-yi Lee, NTU, 2019)
Advanced Topics in Deep Learning (Hung-yi Lee, NTU) 2018
Machine Learning (Hung-yi Lee, NTU) 2017
Machine Learning From Scratch In Python - Full Course With 12 Algorithms (5 HOURS)
Machine Learning from Scratch - Python Tutorials Patrick Loeber
MIT 6.034 Artificial Intelligence, Fall 2010
Machine Learning || Part 1
邹博 机器学习 BiteOfPython bt:机器学习理论研究
Deep learning and machine learning
End-To-End Data Science with Kaggle | Competition speed run?
Top Kaggle Solution for Fall 2022 Semester
CS188 (Spring 2013) Prof. Pieter Abbeel
人工智能导论 浙江工业大学 共80课时 12小时15分33秒
机器学习-浙江大学(研究生课程) 2017 可以搭配李航《统计学习方法》
Tensorflow for Deep Learning Research(, )
CS480/680 Intro to Machine Learning - Spring 2019 - University of Waterloo
Understanding Machine Learning - Shai Ben David | UWaterloo
CS229: Machine Learning | Summer 2019 (Anand Avati)
Stanford CS229 Machine Learning 2008 吴恩达(Andrew Ng)
机器学习(Machine Learning)吴恩达(Andrew Ng)
【斯坦福大学】深度学习(全192讲)吴恩达 27:19:55
Andrew Ng’s Machine Learning Specialization 2022 | What is it and is it worth taking?
EE104: Introduction to Machine Learning
DMQA Lab Open AI/ML Seminar
机器学习-45-ML-01-Meta Learning(元学习)
Stanford CS221: Artificial Intelligence: Principles and Techniques | Autumn 2019
Machine Learning for Computational Fluid Dynamics
CS230: Deep Learning | Autumn 2018
CS545 - Information and Data Analytics Seminar Series(, )
Data Analytics Crash Course: Teach Yourself in 30 Days
机器能像人一样思考吗?人工智能(一)机器学习和神经网络()
Machine Learning & Deep Learning Fundamentals
Understanding Machine Learning - Shai Ben-David
AI, ML & Data Science - Training | Projects - Pantech E Learning
Artificial Intelligence: Knowledge Representation and Reasoning
July 2019 - Practical Machine Learning with Tensorflow
An Introduction to AI - Mausam | IITD - NPTEL
Statistical Learning - Rob and Trevor Hastie | Stanford
Spring 2015: Statistical Machine Learning (10-702/36-702)
Spring 2017: Statistical Machine Learning (10-702/36-702)
ML - Yaser Abu-Mostafa | Caltech
Machine Learning Course - CS 156
AI - Patrick Winston | MIT
Computation and the Brain - Christos H. Papadimitriou December 26 - 28 2019
机器学习(Machine Learning)吴恩达(Andrew Ng)
Lecture Collection | Machine Learning 吴恩达(Andrew Ng)
机器学习基础:案例研究(华盛顿大学) 共116课时 8小时3分27秒
[2020] 统计机器学习 [Statistical Machine Learning]【生肉】图宾根机器学习
33:05:54Statistical Machine Learning — Ulrike von Luxburg, 2020
机器学习导论(张志华) 共42课时 1天4小时6分25秒
人工智能 江西理工 罗会兰 共40课时 8小时47分20秒
Python机器学习应用 共27课时 3小时17分52秒
Apprentissage automatique - Université de Sherbrooke
Intelligence Artificielle - Université de Sherbrooke
Theoretical Deep Learning Course
Machine Learning with Python || Machine Learning for Beginners
Machine Learning Course for Beginners
【臺大探索第26期】Future of AI:人工智慧大未來
AI And Machine Learning Full Course | AI Tutorial | Machine Learning Tutorial 2022 | 11:29:16
AI And Machine Learning Full Course 2022 | AI Tutorial | Machine Learning Tutorial | 9:59:10
Machine Learning for beginners
Artificial Intelligence Lessons
How I'm Learning AI and Machine Learning
Machine Learning Course - CS 156
Miscellaneous but useful information about deep learning
Complete Machine Learning playlist
Harvard CS50’s Artificial Intelligence with Python – Full University Course
Stanford AA289 - Robotics and Autonomous Systems Seminar
Learn Core Machine Learning for FREE | Ultimate Course for Beginners
B站首推!字节大佬花一周讲完的人工智能,2023公认最通俗易懂的【AI人工智能教程】小白也能信手拈来(人工智能|机器学习|深度学习|CV)等等随便白嫖!
【全1024集】清华大佬关门弟子课程!这波不亏,全程高能,学完即可上岸,拿走不谢!
这绝对是B站最全的了!AI人工智能、机器学习、深度学习、OpenCV、神经网络(附项目实战搭配学习)一口气全都学完! 61:06:06
【整整600集】北大教授196小时讲完的AI人工智能从入门到项目实战全套教程,全程干货无废话!学完变大佬!这还学不会我退出IT圈!机器学习/深度学习/神经网络
系列交叉论坛 第37期 徐宗本 AI的10个重大数理基础问题
演讲实录丨徐宗本院士:如何突破机器学习的先验假设?
Setting Up CUDA, CUDNN, Keras, and TensorFlow on Windows 11 for GPU Deep Learning
【唐宇迪】机器学习600集!机器学习算法精讲及其案例应用,直接看时长!最全最完整的机器学习教程从零基础开始学习!-人工智能/深度学习/机器学习 30:25:37
这也太全了!回归算法、聚类算法、决策树、随机森林、神经网络、贝叶斯算法、支持向量机等十大机器学习算法一口气学完! 29:50:56
Machine Learning Foundations (機器學習基石) 机器学习基石
Machine Learning Techniques (機器學習技法) 机器学习技法
Probabilistic Machine Learning — Philipp Hennig, 2021
[2020] 概率机器学习 [Probabilistic Machine Learning]【生肉】图宾根大学机器学习
【图机器学习Machine Learning with Graphs】精译【Stanford 公开课 CS224W (Fall 2021)】(中英双语字幕) 22:25:02
Stanford CS224W: Machine Learning with Graphs
2024 Fall 台大資訊 深度學習之應用 NTU CSIE ADL
2023 Spring 台大資訊 人工智慧導論 NTU CSIE FAI
2022 Fall 台大資工 深度學習之應用 NTU CSIE ADL
2022 Spring 台大資工 深度學習之應用 NTU CSIE ADL
2021 Spring 台大資工 深度學習之應用 NTU CSIE ADL
2020 Spring 台大資工 深度學習之應用 NTU CSIE ADL
MIT 6.S192: Deep Learning for Art, Aesthetics, and Creativity
Deep Learning & Machine Learning
NVIDIA Deep Learning Course
Learn TensorFlow and Deep Learning (beginner friendly code-first introduction)
Neural Networks from Scratch in Python()
PyTorch for Deep Learning - Full Course / Tutorial 9:41:39
Bay Area Deep Learning School
深度学习能工作的秘密 ():深度神经网络中的隐式自正则化
Deep Learning Applications
Theoretical Deep Learning
Deep Learning for Computer Architects
DeepLearning - Mitesh Khapra, SKS Iyengar || IIT Ropar and Madras - NPTEL
Deep Learning - Andrew Ng Kian Katanforoosh | Stanford - OnlineHub
Deep Learning - Ali Ghodsi | STAT 946 - U.Waterloo
Deep Learning Course by Sargur N. Srihari
Deep Learning by Sargur N. Srihari
Neural networks class - Université de Sherbrooke
[Coursera] Neural Networks for Machine Learning — Geoffrey Hinton
Deep Learning Crash Course for Beginners
Practical Deep Learning for Coders - Full Course from fast.ai and Jeremy Howard
Neural Networks from Scratch with Python and Opencv
CS294-158 Deep Unsupervised Learning
How Deep Neural Networks Work - Full Course for Beginners
Deep Learning: CS 182 Spring 2021
NIPS 2016 Deep Learning for Action and Interaction Workshop
Ilya Sutskever: Deep Learning | Lex Fridman Podcast #94
GPT-4 Creator Ilya Sutskever
Ilya Sutskever (OpenAI Chief Scientist) - Building AGI, Alignment, Spies, Microsoft, & Enlightenment
Sam Altman回归!聊聊“叛变者”的恐惧与信念:OpenAI技术灵魂人物Ilya Sutskever
The Robot Brains Podcast Ilya Sutskever
Inside OpenAI [Entire Talk]
OpenAI成长史:顶级资本与科技大佬的理想主义,冲突,抉择与权力斗争;马斯克、奥特曼、纳德拉与比尔·盖茨等人的背后故事【深度】
Deep Learning Basics: Introduction and Overview
Machine Learning & Neural Networks without Libraries – No Black Box Course
【李沐】动手学深度学习-pytorch 2021版 数据丢失
() Neural Networks and Deep Learning
() Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization
() Structuring Machine Learning Projects
() Convolutional Neural Networks
Python And Data Science Full Course | Data Science With Python Full Course In 12 Hours |
Build 12 Data Science Apps with Python and Streamlit - Full Course()
Data Science - Learn to code for beginners
Tools in Scientific Computing
MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
Data Analysis with Python - Full Course for Beginners (Numpy, Pandas, Matplotlib, Seaborn) 4:22:12
Data Analysis Tutorial for Beginners
Data Analysis with Python for Excel Users - Full Course
Build 12 Data Science Apps with Python and Streamlit - Full Course
Data Analysis with Python Course - Numpy, Pandas, Data Visualization
Intro to Data Science - Crash Course for Beginners
Solving real world data science tasks with Python Pandas!
Reproducible Data Analysis in Jupyter
Learn Data Science Tutorial - Full Course for Beginners
Data Science and Machine Learning with Python and R
Polars: The Next Big Python Data Science Library... written in RUST?
Data Science Job Interview – Full Mock Interview
10x Your Data Science With Polars
XGBoost与LightGBM 数据科学家常用工具大PK——性能与结构
Time Series Forecasting with XGBoost - Use python and machine learning to predict energy consumption
scikit-learn (sklearn) 0.21.3 官方文档中文版 (, )
Scikit-Learn Python Tutorial | Machine Learning with Scikit-learn
Jake VanderPlas: Machine Learning with Scikit Learn
Real-World Python Machine Learning Tutorial w/ Scikit Learn (sklearn basics, NLP, classifiers, etc)
Professional Preprocessing with Pipelines in Python
Precision & Recall in Machine Learning Explained
机器学习Sklearn全套教程(程序员必备) drive
Traditional Machine Learning in Python
Scikit-Learn Tutorial | Machine Learning With Scikit-Learn | Sklearn | Python Tutorial |
Scikit-Learn Course - Machine Learning in Python Tutorial
Scikit-learn Crash Course - Machine Learning Library for Python
Introduction to scikit-learn
Introduction to Python in Google Colab and Introduction to Sci Kit Learn
Python in Data Science for Intermediate
Understanding Pipeline in Machine Learning with Scikit-learn (sklearn pipeline)
Machine learning in Python with scikit-learn
Scikit-Learn Model Pipeline Tutorial
Using Scikit-Learn Pipelines for Data Preprocessing with Python
Stock Price Prediction & Forecasting with LSTM Neural Networks in Python colab
Rain Prediction | Building Machine Learning Model for Rain Prediction using Kaggle Dataset
Titanic Survival Prediction in Python - Machine Learning Project
Desafio Kaggle: Titanic - Preparando os dados - Parte 1
Logistic Regression with Python | Titanic Data | Your First Kaggle Project |
Kaggle Titanic Survival Prediction Competition Part 1/2 - Exploratory Data Analysis
CART - Classification And Regression Trees
Decision Tree Classification Clearly Explained!
Linear Regression and Linear Models
線性機率模型 (LPM) 與邏輯斯迴歸 (Logistic Regression)
【Stata小课堂】第24讲:有序多分类Logistic回归(Ordinal Logistic Regression)
Big Data Analysis - Regression
Tutorial 35- Logistic Regression Indepth Intuition- Part 1| Data Science
08逻辑回归算法 课时46逻辑回归算法原理推导 tyd
Logistic Regression - Is it Linear Regression?
Decision Tree Classification Algorithm in Telugu
一套完整的基于随机森林的机器学习流程(特征选择、交叉验证、模型评估))
Random Forest Algorithm Clearly Explained!
How Do Random Forests Work & What is Ensemble Learning
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision (Machine Learning Research Paper Explained)
MLP Mixer Is All You Need?
MLP-Mixer:一个比ViT更简洁的纯MLP架构 知乎
MLP-Mixer: MLP is all you need... again? ...
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision
Prediction using Artificial Neural Network (MLP) - Predict Car Price
What are MLPs (Multilayer Perceptrons)?
Multilayer Perceptrons - Ep.6 (Deep Learning Fundamentals)
Perceptron Algorithm with Code Example - ML for beginners!
使用KAN网络,更少参数更高准确率,更好的可解释性 替代传统MLP!
Understanding Machine Learning - Shai Ben-David
Numpy: Kmeans Clustering from Scratch
K-means & Image Segmentation -
K-Means Clustering From Scratch in Python (Mathematical)
How to implement Linear Regression from scratch with Python
10b Machine Learning: LASSO Regression
Polynomial Regression in Python
Poisson regression with tidymodels for package vignette counts
Regression Analysis | Full Course
How to do Multiple Linear Regression in Python| Jupyter Notebook|Sklearn
Multivariable Linear Regression using Gradient Descent Algorithm in Python,Step by Step from scratch
Multiple Linear Regression using python and sklearn
Statistics PL15 - Multiple Linear Regression
Linear Regression From Scratch in Python (Mathematical)
简单线性回归简介(simple linear regression )Python统计66——Python程序设计系列169
Bayesian Linear Regression: Simple Linear Regression Review
Bayesian Linear Regression: Distribution of Parameter Estimate
Machine Learning Foundations Course – Regression Analysis
Interpreting Linear Regression Results
KNN Algorithm In Machine Learning | KNN Algorithm Using Python | K Nearest Neighbor |
KNN (K-Nearest Neighbor) Algorithm in Telugu
K - Nearest Neighbors - KNN Fun and Easy Machine Learning
Predicting CS:GO Round Winner with Machine Learning
K-Nearest Neighbors Classification From Scratch in Python (Mathematical)
K-Nearest Neighbors Algorithm From Scratch In Python
数据科学读书会 Book 15 - 时间序列分析 单变量时间序列
Structured Learning 4: Sequence Labeling
Time Series Analysis (Forecasting, Mining, Transformation, Clustering, Classification) + Python code
02417 Time Series Analysis 2018
02417 Time Series Analysis, Fall 2017
02417 Time series analysis, Fall 2016
Multivariate Time Series Forecasting with LSTM using PyTorch and PyTorch Lightning (ML Tutorial)
Multivariate Time Series Forecasting Using LSTM, GRU & 1d CNNs
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jeff Roach
Convolutional neural networks with dynamic convolution for time series classification
Webinar: Time-series Forecasting With Model Types: ARIMAX, FBProphet, LSTM
161 - An introduction to time series forecasting - Part 1
162 - An introduction to time series forecasting - Part 2 Exploring data using python
163 - An introduction to time series forecasting - Part 3 Using ARIMA in python
166 - An introduction to time series forecasting - Part 5 Using LSTM
181 - Multivariate time series forecasting using LSTM
Time Series Analysis (ARIMA) using Python
Time Series Analysis For Rainfall Prediction Using LSTM Model - Explained For Beginners
Time Series Forecasting with XGBoost - Use python and machine learning to predict energy consumption
Time Series Analysis with FB Prophet
Understanding SVM ,its Type ,Applications and How to use with Python
Support Vector Machine Algorithm in Telugu
Support Vector Machine - How Support Vector Machine Works | SVM In Machine Learning |
Support Vector Machine - SVM - Classification Implementation for Beginners (using python) - Detailed
Support Vector Machine (SVM) Basic Intuition- Part 1| Machine Learning
Batch Normalization - EXPLAINED!
Neural Networks from Scratch with Python and Opencv
How Deep Neural Networks Work - Full Course for Beginners
Stanford Seminar - Incorporating Sample Efficient Monitoring into Learned Autonomy
The Mathematics of Neural Networks
Illustrated Guide to Deep Learning
How are memories stored in neural networks? | The Hopfield Network #SoME2
Hopfield Networks is All You Need (Paper Explained)
Talk | FAIR研究科学家刘壮:高效和可扩展的视觉神经网络架构
Neural Networks are Decision Trees (w/ Alexander Mattick)
Visualizing and Understanding Deep Neural Networks by Matt Zeiler
GLOM: How to represent part-whole hierarchies in a neural network (Geoff Hinton's Paper Explained)
[DMQA Open seminar] Backbone Network in Deep learning
How to Create a Neural Network (and Train it to Identify Doodles)
10 Tips for Improving the Accuracy of your Machine Learning Models
Neural Networks: Zero to Hero OpenAI 核心成员, 特斯拉自动驾驶
你能不能训练一个GPT类大型语言模型? 安德鲁·卡帕西(Andrej Karpathy)
Neural Network from Scratch | Mathematics & Python Code
Gradient Descent From Scratch in Python - Visual Explanation
Deriving the Ultimate Neural Network Architecture from Scratch #SoME3
Why Neural Networks can learn almost anything
Lecture 16 - Radial Basis Functions
Mod-01 Lec-27 RBF Neural Network
Mod-01 Lec-28 RBF Neural Network (Contd.)
4 Ways To Visualize Neural Networks in Python
Track your machine learning experiments locally, with W&B Local - Chris Van Pelt
Recurrent Neural Networks - EXPLAINED!
LSTM Networks - EXPLAINED!
6. Monte Carlo Simulation MIT 6.0002
蒙特卡洛树搜索基础(Monte Carlo Tree Search)
【讀論文】蒙地卡羅 詳細過程 | Monte Carlo Tree Search| 遊戲樹
Monte Carlo Tree Search Udacity
Monte Carlo Tree Search (MCTS) Tutorial
【数之道 21】随机抽样、蒙特卡洛模拟与逆转换方法
【数之道 22】巧妙使用"接受-拒绝"方法,玩转复杂分布抽样
Monte Carlo simulation for Conditional VaR (Excel)
MATLAB小课堂——如何使用蒙特卡洛模拟进行预测?
Advanced 4. Monte Carlo Tree Search
AI如何下棋?直观了解蒙特卡洛树搜索MCTS!!!
徐亦达机器学习课程 Markov Chain Monte Carlo () ()()()徐亦达
Intro to Reinforcement Learning 强化学习纲要 第二课 马尔科夫决策过程 Bolei Zhou
A friendly introduction to Bayes Theorem and Hidden Markov Models
Lecture 8: Markov Decision Processes (MDPs)
Finite Math: Introduction to Markov Chains
【数之道 20】5分钟理解'马尔可夫链'的遍历性与唯一稳态 Markov Chain's Ergodicity and Stationary Distribution
Lecture 7: Markov Decision Processes - Value Iteration | Stanford CS221: AI (Autumn 2019)
Markov Decision Processes (MDPs) - Structuring a Reinforcement Learning Problem
Stanford教授Daphne Koller 概率图模型 — 终极入门 第讲 马尔可夫网络 (Markov Networks)
Markov Chains Clearly Explained!
直观讲解因子分解机Factorization Machine
Steffen Rendle. Factorization machines 2010 IEEE
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 2018
Building a Social Network Content Recommendation Service Using Factorisation Machines - Conor Duke
Maximum Entropy Methods Tutorial
Entropy (for data science) Clearly Explained!!!
How Do Random Forests Work & What is Ensemble Learning
Community Talks on Day 2 | PyTorch Developer Day 2021
Stanford CS330: Deep Multi-Task and Meta Learning
Stanford CS330: Deep Multi-Task & Meta Learning I Autumn 2021I Professor Chelsea Finn
Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022
神经网络结构搜索 Neural Architecture Search
神经网络(十二) 自动神经网络(AutoML)与网络架构搜索(NAS)
Hyperparameter Tuning in Python with GridSearchCV
ROC Optimal Threshold ► Data Science Exercises #22
AutoML with Auto-Keras (14.1)
169 - Deep Learning made easy with AutoKeras
171 - AutoKeras for image classification using cifar10 data set
Automated Deep Learning with AutoKeras
I tried building a AUTO MACHINE LEARNING Web App 15 Minutes
Neural Architecture Search
Create Simple AutoML System from Scratch
CVPR'20 Interpretable Machine Learning Tutorial
Talk | 微软亚洲研究院王希廷:基于逻辑规则推理的深度自可解释模型
Talk | 剑桥大学在读博士生苏熠暄:对比搜索(Contrastive Search)—当前最优的文本生成算法
MoCo 论文逐段精读【论文精读】 视觉 无监督表示学习 动量对比学习
Meta-Learning and One-Shot Learning
Model Agnostic Meta Learning
Learning to learn: An Introduction to Meta Learning
Ilya Sutskever: OpenAI Meta-Learning and Self-Play | MIT Artificial General Intelligence (AGI)
各種奇葩的元學習 (Meta Learning) 用法
【機器學習2021】元學習 Meta Learning (一) - 元學習跟機器學習一樣也是三個步驟
【機器學習2021】元學習 Meta Learning (二) - 萬物皆可 Meta
Few Shot Learning - EXPLAINED!
Few-shot learning in production
OpenAI's CLIP for Zero Shot Image Classification
Fast Zero Shot Object Detection with OpenAI CLIP
Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022
Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
【機器學習 2022】各式各樣神奇的自注意力機制 (Self-attention) 變型
Attention in Neural Networks
联邦学习:技术角度的讲解(中文)Introduction to Federated Learning
[Tutorial] FedML: a research library for federated machine learning
90秒入门联邦学习 Federated learning
什么是联邦学习(Federated Learning)?【知多少】
详解联邦学习Federated Learning - 知乎
5 concepts of A/B testing you should know as a Data Scientist
How to run A/B Tests as a Data Scientist!
A/B Testing:轻松Pass二轮面试!AB 测试具体步骤及参数详解,附具体案例演示及结论分析
A/B Testing面试干货: 一个你以为你会但总挡住你拿offer的必学知识点 - A/B测试(第427期)
商业分析师AB测试设计实战技巧,大厂Business Analyst为你实例解析AB Testing(第520期)
AB test calculator (pet project) | Gleb Builds #2
Phoneme Detection with CNN-RNN-CTC Loss Function - Machine Learning
CTC for Offline Handwriting Recognition
F18 Recitation 8: Connectionist Temporal Classification (CTC)
S18 Lecture 14: Connectionist Temporal Classification (CTC)
数据科学读书会 Book 17 – 因果推断 因果效应(Causal Effect)
数据科学读书会 Book 17 - 因果推断-因果推断的公式和模型
探索因果规律之因果推断基础(ft. The Book of Why by Judea Pearl)
【数之道 04】解决最优路径问题的妙招-蚁群ACO算法
What is an Autoencoder? | Two Minute Papers #86
Simple Explanation of AutoEncoders
Autoencoders - Ep. 10 (Deep Learning SIMPLIFIED)
85a - What are Autoencoders and what are they used for?
Understanding and Applying Autoencoders in Python!
85b - An introduction to autoencoders - in Python
Autoencoder Dimensionality Reduction Python TensorFlow / Keras #CodeItQuick
Autoencoders Explained Easily
Autoencoders Made Simple!
Variational Autoencoders - EXPLAINED!
178 - An introduction to variational autoencoders (VAE)
179 - Variational autoencoders using keras on MNIST data
What are Generative Models? | VAE & GAN | Intro to AI
Build a Stable Diffusion VAE From Scratch using Pytorch
通常在研究贝叶斯模型中,需要去求解一个后验概率(Posterior)分布,但是由于求解过程的复杂性,因此很难根据贝叶斯理论求得后验概率分布的公式精确解,所以一种方法是用一个近似解来替代精确解,并使得近似解和精确解的差别不会特别大。一般求解近似解的方法有两种:第一种是基于随机采样的方法,比如用蒙特卡洛采样法去近似求解一个后验概率分布;第二种就是变分贝叶斯推断法。变分贝叶斯法是一类用于贝叶斯估计和机器学习领域中近似计算复杂积分的技术。它关注的是如何去求解一个近似后验概率分布。
如何简单易懂地理解变分推断(variational inference)?
人工智慧在臺灣:產業轉型的契機與挑戰|陳昇瑋研究員
BUILD and SELL your own A.I Model! $500 - $10,000/month (super simple!)
Machine Learning Projects You NEVER Knew Existed
Data Collection Project Ideas & Demos
ROC and AUC, Clearly Explained!
145 - Confusion matrix, ROC and AUC in machine learning
Image Annotation for Machine Learning
149 - Working with imbalanced data for ML - Demonstrated using liver disease data
Data Visualization with D3 – Full Course for Beginners [2022]
Data Visualization with D3.js - Full Tutorial Course() 老版本
Visualization and Interactive Dashboard in Python: My favorite Python Viz tools — HoloViz
ContextLab/ 用于获得对高维数据的几何洞察力的 Python 工具箱
How to Create a Beautiful Python Visualization Dashboard With Panel/Hvplot
Data Visualization Using Python BOKEH | Python Bokeh Dashboard | Full Course
Python数据可视化详解大全-从简单到完善到高级设置(Matplotlib/Seaborn/Plotly/常用统计图形)
Automatically Visualize Datasets with AutoViz in Python
Python Data Analysis Projects for 2022 | Data Analysis With Python | Python Training |
Build a Media Analysis Dashboard with Python & Cloudinary
Interactive Web Visualizations with Bokeh in Python
Visualizing Binary Data with 7-Segment Displays
🔴 Visualizing Data Structures and Algorithms with VS Code
Data Visualization Tutorial using Qliksense
D3 JS - Build Data Driven Visualizations with Javascript [svg animation, data engineering]
Plotnine: A Different Approach To Data Visualization in Python
7 Python Data Visualization Libraries in 15 minutes
Machine Learning Course - Lesson 2: Visualizing Data with JavaScript
Create Interactive Maps & Geospatial Data Visualizations With Python | Real Python Podcast #143
Build a Chart using JavaScript (No Libraries)
Machine Learning Model Evaluation in JavaScript Radu
Tableau in Two Minutes - Tableau Basics for Beginners
How to create Radial Chart in Tableau| Step-by-step
Tableau数据可视化,学完就掌握商业分析必备技能了!(第613期)
How to Deploy Machine Learning Apps?
Kevin Goetsch | Deploying Machine Learning using sklearn pipelines
Talk | 清华大学在读博士生胡展豪:可以骗过人工智能检测器的隐身衣
Deploy ML Models from Colab with FastAPI & ColabCode - Free ML as a Service
Run Your Flask App In Google Colab | [ Updated Way ]
How to run Google Colab or Kaggle notebooks on VSCODE (My experience running example code on GPU)
Deploying production ML models with TensorFlow Serving overview
Build & Deploy AI SaaS with Reoccurring Revenue (Next.js, OpenAI, Stripe, Tailwind, Vercel)
How to Deploy a Web App Using Multiple Methods (Azure, Render, MongoDB Atlas, Koyeb, and more )
👍AI 项目本地部署-通用脚本🟢小白都能用 🟢 通吃GitHub上的AI相关项目🟢 Step by Step 一个脚本搞定 🟢 AI项目本地部署保成功
Deploy Python Applications - Google Cloud Run with Docker
Deploy Python Applications From Source - Google Cloud Run
NVIDIA TensorRT: High Performance Deep Learning Inference
【AIGC】七千字通俗讲解Stable Diffusion | 稳定扩散模型 | CLIP | UNET | VAE | Dreambooth | LoRA
Talk | 北京大学杨灵:扩散生成模型的方法、关联与应用
Diffusion models explained in 4-difficulty levels
DDPM - Diffusion Models Beat GANs on Image Synthesis (Machine Learning Research Paper Explained)
Ultimate Guide to Diffusion Models | ML Coding Series | Denoising Diffusion Probabilistic Models
Exploring the NEW Hugging Face Diffusers Package | Diffusion Models w/ Python
Stable Diffusion - What, Why, How? 54:07 colab
Creating Stable Diffusion Interpolation Videos
[ML News] Stable Diffusion Takes Over! (Open Source AI Art)
Harmonai, Dance Diffusion and The Audio Generation Revolution
Google's AI: Stable Diffusion On Steroids! 💪
30年前游戏角色画风一键升级!从粗糙像素风变成高清建模画风
Diffusion Models | Paper Explanation | Math Explained
Diffusion models from scratch in PyTorch
JEPA - A Path Towards Autonomous Machine Intelligence (Paper Explained)
Google's DreamFusion AI: Text to 3D sentdexGoogle's DreamFusion AI: Text to 3D
I tried to build a REACT STABLE DIFFUSION App in 15 minutes
Stable Diffusion Is Getting Outrageously Good! 🤯
Stable Diffusion Version 2: Power To The People… For Free!
[ML News] Multiplayer Stable Diffusion | OpenAI needs more funding | Text-to-Video models incoming
Google's Prompt-to-Prompt: Diffusion Image Editing
Diffusion Model 수학이 포함된 tutorial
Stable Diffusion in Code (AI Image Generation) -
AI换脸,AI去马赛克是如何实现的?初识人工智能大火算法-扩散模型
Diffusion and Score-Based Generative Models
Generative Adversarial Networks (GANs) and Stable Diffusion
Diffusion Models - Live Coding Tutorial
Diffusion Models - Live Coding Tutorial 2.0
MIT 6.S192 - Lecture 22: Diffusion Probabilistic Models, Jascha Sohl-Dickstein
Diffusion Models for Inverse Problems
Planning with Diffusion for Flexible Behavior Synthesis
Hierarchically branched diffusion models
Diffusion models as plug-and-play priors
Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications
【stable diffusion】由淺入深了解Diffusion擴散模型 唐宇迪
AI Art Taking World By Storm - Diffusion Models Overview
AI Art for Beginners - Stable Diffusion Crash Course
CS 198-126: Lecture 12 - Diffusion Models
What are Diffusion Models?
Talk | MIT许逸伦:解锁由物理启发的深度生成模型-从扩散模型到泊松流模型
[專題解說] Introduction to Diffusion Model 擴散模型入門 [附程式碼] 教學
號稱打敗 GAN 的生成模型: Diffusion Models
AI Art with Stable Diffusion (Women of the World)
最火的AI作图模型,这5款免费下载,含提示词,配合 Stable-diffusion 来制作高清大图吧! |
Generating Realistic AI Images with Stable Diffusion
Stable Diffusion不用獨立顯卡,不需上網連線,10分鐘超簡單安裝教學就把AI繪圖搬回家,有NVIDIA獨顯繪畫更快,Stable Diffusion能單機使用,比Midjourney好用
Lesson 9: Deep Learning Foundations to Stable Diffusion, 2022
由Stabiliti AI在2022年发布的工具 抓取了50亿公开图片, 可以用文字和图片生成图片 colab Chillout_mix
云端AI绘图软件+本地Stable Diffusion免安装版+懒人常用模型包,完全使用攻略-猩猩看了都会用的AI绘图视频教程
Easiest Way To Install Stable Diffusion & Generate AI Images
教你用 Google colab 免費玩 Stable Diffusion 作出擬真美女圖片! Lora、ControlNet 教學(iPhone、Android、筆電、Mac 均適用)
JW608 Plays With Stable Diffusion!
[Stable Diffusion AI畫圖插件] Composable LoRA加強版! 支援LoCon、LyCORIS,並能讓LoRA只在特定步數作用!
Stable Diffusion教學 使用Lora製作AI網紅
Stable Diffusion Tutorials, Automatic1111 Web UI & Google Colab Guides, DreamBooth, Textual Inversion / Embedding, LoRA, AI Upscaling, Video to Anime
Stable Diffusion Got Supercharged - For Free!
生成扩散模型漫谈(十七):构建ODE的一般步骤(下)
Mac上最好用的StableDiffusion客户端,Draw Things详细演示!The best local AI painting Stable DIffusion client Intro.
Stable Diffusion 進階教學:Colab 如何套 Lora、動漫圖真人化、網拍模特不求人、黑白線稿自動上色
Stable Diffusion教程 从入门到精通
真人LORA训练全攻略!看这篇就够了 LORA模型 Stable diffusion 教程 真人模型
| 图像生成模型之DDPM | 扩散模型 | 生成模型 | 概率扩散去噪生成模型 | Diffusion Model
MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation
高清放大插件MultiDiffusion 小显存也能跑出4k图 低配福音
AI大模型是什么?可以让人工智能和人类一样?GPT-3、M6大模型
#84 LAURA RUIS - Large language models are not zero-shot communicators [NEURIPS UNPLUGGED]
Talk | 微信AI高级研究员苏辉:微信AI大规模预训练语言模型WeLM
Real World Applications of Large Models
Foundation models and the next era of AI
Emily M. Bender — Language Models and Linguistics
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)
AI Hairball - ChatGPT + Stable Diffusion
Talk | 东京大学博士生刘海洋:多模态驱动谈话动作生成-质量与多样性
OpenAI CLIP Explained | Multi-modal ML
Fast Zero Shot Object Detection with OpenAI CLIP
OpenAI's CLIP for Zero Shot Image Classification
Fast intro to multi-modal ML with OpenAI's CLIP
OpenAI CLIP: ConnectingText and Images (Paper Explained)
Domain-Specific Multi-Modal Machine Learning with CLIP
CLIP: Connecting Text and Images
OpenAI CLIP - Connecting Text and Images | Paper Explained
OpenAI’s CLIP explained! | Examples, links to code and pretrained model
Talk | 微软高级研究员杨征元:统一的视觉语言模型
Vision Transformer (ViT) 用于图片分类
Vision Transformers (ViT) Explained + Fine-tuning in Python
只有Meta才懂多模态,ImageBind,在一个嵌入的空间中补齐六种模态。像人一样,感受完整的空间。突破语言的桎梏,将关注度重新吸引回元宇宙。
【分享】LLM论文研读 | ImageBind One Embedding Space To Bind Them All | 六种模态大统一 | Kevin分享 | Meta AI
ImageBind: a new way to ‘link’ AI across the senses
【機器學習2022】自然語言處理上的對抗式攻擊 (由姜成翰助教講授)
Talk | 清华大学在读博士生胡展豪:可以骗过人工智能检测器的隐身衣
复旦大学邱锡鹏教授的《神经网络与深度学习》 19:05:43
机器学习实战(Machine Learning in Action) (, )
Interpretable Machine Learning (, )
ml5.js - Machine Learning for Web (, )
机器学习训练秘籍(Machine Learning Yearning 中文版) (, )
Pipcook v1.0 机器学习工具使用教程 (, )
Deeplearning Algorithms Tutorial(深度学习算法教程) (, , )
深度学习入门-基于Python的理论与实现 deep-learning-from-scratch
【一起啃书】机器学习西瓜书白话解读 13:10:47
【完整版-南京大学-机器学习】全66讲 58:28:56
南京大学周志华完整版100集【机器学习入门教程】 96:21:52
周志华《机器学习》西瓜书+李航《统计学习方法》 54:56:53
求推荐一部以李航的《统计学习方法》为教材的教学视频?
深度之眼《统计学习方法》第二版啃书指导视频 08:55:48
大数据机器学习(袁春) 共113课时 15小时39分33秒
《统计学习方法·第2版》手推公式+算法实例+Python实现 22h
统计学习 Statistical Learning
周志华《机器学习》西瓜书+李航《统计学习方法》 54:56:53
2020 Machine Learning Roadmap (still valid for 2021)
Why AI is Harder Than We Think (Machine Learning Research Paper Explained)
Discovering ketosis: how to effectively lose weight
25th-engineer/DaChuangFiles
How to Do Freelance AI Programming
Variational Autoencoders - EXPLAINED!
Productionize Your ML Workflows with MLOps Tools
ml-tooling/ 项目包括:机器学习框架、数据可视化、图像、NLP和文本、图、金融领域、时间序列等等,内容非常全
7 FREE A.I. tools for YOU today! (plus 1 bonus!)
The History of Artificial Intelligence [Documentary] Futurology —
Artificial Intelligence: Exploring the Pros and Cons for a Smarter Future